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Chapter 2

PRODUCTIVITY, EFFICIENCY, AND DATA ENVELOPMENT ANALYSISPRIVATE 

2.1 Introduction


Any decision-making problem faced by an economic agent (like a consumer or a producer) has three basic features. First, there are the variables the values of which are chosen by the agent. These are the choice or decision variables in the problem. Second, there are the restrictions that define the set of feasible values from which to choose. Finally, there is some criterion function that assigns different values to the outcomes from alternative decisions. PRIVATE 


In the context of production, the decision-making agent is the firm. The choice variables are the quantities of outputs to be produced as well as the quantities of inputs used. The input-output combination selected by the  firm must be technically feasible in the sense that it must be possible to produce the output bundle selected from the associated input bundle. For a commercial firm facing well defined market prices of inputs and outputs, the profit measured by the difference between revenue and cost serves as the criterion of choice. It is possible, therefore, to rank the alternative feasible input-output combinations in order of the profit that results from them.


When the criterion function has a finite maximum value attainable over the feasible set of the choice variables, this maximum value can be used as a benchmark for evaluating the efficiency of a decision-making agent. The closer the actual profit of a firm is to the maximum attainable, the greater is its efficiency. 


It is important to recognize that the scope of decision-making defines what can be regarded as choice variables and the criterion function has to be appropriately formulated. For example, in many practical situations, the output produced may be an assigned task that is exogenously determined. The producer then only chooses between alternative input bundles that can produce the targeted output. In this context, efficiency lies in minimizing the cost of production. This is true for many not-for-profit service organizations like hospitals, schools, or disaster relief agencies. Even within a for-profit business organization, as one goes down the decision-making hierarchy, the number of choice variables declines. For example, at the lower end of a manufacturing firm  is the production foreman on the shop floor, who is typically assigned a specific input bundle and has to manage the workers under his supervision so as to produce the maximum possible output from these inputs. Therefore, at this level efficiency is to be measured by a comparison of the actual output produced with what is deemed to be maximally possible. For the foreman, input quantities are non-discretionary variables.


The obvious payoff from efficiency measurement is that it provides an objective basis for evaluating the performance of a decision-making agent. The outcome at the highest level of efficiency (e.g., the maximum profit achievable) provides an absolute standard for management by objectives. Further, comparison of efficiency across decision makers at the same level provides a basis for differential rewards. Moreover, one can assess the impact of various institutional or organizational changes by analyzing how it affects the efficiency. For example, the economic reforms in Chinese agriculture introduced in the post-Mao era allowed private farming to a limited extent. The farmers' right to appropriate the surplus (at least in part) considerably increased the output quantities produced from the same input bundle. This increase in efficiency provides an economic justification for these reforms.


Any attempt to measure efficiency raises two questions - one conceptual and the other practical. At the conceptual level: what do we mean by the efficiency of a decision maker? More specifically, where does inefficiency come from? If the laws of production are interpreted as physical laws, identical sets of inputs must produce identical output quantities. Therefore, if the same input bundle results in two different output quantities on two different occasions, it must be true that differences in some other factors relevant for production but not included in the input-output list account for this discrepancy. In agricultural production, for example, the maximum output producible from a given input bundle can vary due to random differences in weather. The stochastic production frontier models allow random shifts in the frontier to accommodate such factors. But even after such accommodation, firms do differ in efficiency. In the spirit of Stigler (1976) one can argue that every observed input-output combination is efficient and any measured inefficiency is due to difference in excluded variables. Thus, if a farmer fails to attain what is considered to be the maximum producible level of output from a given bundle of inputs, it must be due to the fact that he did not either put in the required level of effort or had a lower ability or human capital. Similarly, measured inefficiency of the production supervisor reflects a lower level or quality of managerial input in monitoring efforts of subordinates. Hence, a lower level of efficiency can be ascribed to lower effort, ability, or aptitude.


At the practical level, the benchmark for efficiency measurement depends critically on how the feasible set of input-output bundles is specified. An input-output combination is considered feasible so long as the output quantity does not exceed the value of the estimated function at the specified input quantities. In the absence of any clearly defined engineering formula relating inputs to outputs, this is essentially an empirical issue. A widely applied approach is econometric estimation of a stochastic production frontier. A nonparametric alternative to the econometric approach is provided by the method of Data Envelopment Analysis (DEA) that builds on the pioneering work of Farrell (1957).


At the lowest level of decision making the objective is to produce the maximum quantity of output from a specific input bundle, and the benchmark is determined by the technology itself and comparison of the actual output produced with the benchmark quantity yields a measure of technical efficiency. This is different from economic efficiency where one compares the profit resulting from the actual input-output bundle with the maximum profit possible. Here, apart from the technology, the market prices of inputs and outputs also play an important role. As will be shown later, technical efficiency is an important component of economic efficiency and a firm cannot achieve full economic efficiency unless it is technically efficient. In this chapter, we focus on technical efficiency and show how Data Envelopment Analysis can be used to measure it.
2.2  Productivity and Technical Efficiency:


Production is an act of transforming inputs into outputs. Because the objective of production is to create value through transformation, outputs are, in general, desirable outcomes. Hence, more output is better. At the same time, inputs are valuable resources with alternative uses. Unspent quantity of any input can be used for producing more of the same output or to produce a different output. The twin objectives of efficient resource utilization by a firm are (a) to produce as much output as possible from a specific quantity of input and, at the same time, (b) to produce a specific quantity of output using as little input as possible.


An input-output combination is a feasible production plan if the output quantity can be produced from the associated input quantity. The technology available to a firm at a given point in time defines which input-output combinations are feasible.


Two concepts commonly used to characterize a firm's resource utilization performance are (i) productivity and (ii) efficiency. These two concepts are often treated as equivalent in the sense that if firm  A is more productive than firm  B then it is generally believed that firm  A must also be more efficient. This is not always true, however. Although closely related, they are fundamentally different concepts. For one thing, productivity is a descriptive measure of performance. Efficiency, on the other hand, is a normative measure. The difference between the two can be easily understood using an example of two firms from a single input, single output industry. 

2.3 The Single Output, Single Input Technology:

Suppose that firm A uses xA units of the input x to produce yA units of the output y. firm B, on the other hand, produces output yB from input xB . Then the average productivities of the two firms are
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If  APA > APB  we conclude that firm  A is more productive than firm  B. We can even measure the productivity index of firm  A relative to firm  B as
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If this productivity index exceeds 1, firm A is more productive than firm B. The higher it goes above unity, the more productive is firm A relative to firm B. 


Assuming that  ( xA, yA ) = (16,3)  and  ( xB, yB ) = (64,7),




[image: image4.wmf]16

3

 

=

 

AP

A

 and 
[image: image5.wmf] 

64

7

 

=

  

AP

B

.

Thus,
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Hence, firm A is 1.7 times as productive as firm B.


An important point to note is that in the single output, single input case we do not need to know the technology to measure either the absolute or the relative productivity of a firm. In this respect, APA or APB merely describes the performance of the individual firm without evaluating such performance. Of course, the productivity index does provide a comparison between the firms. Nevertheless, it uses no reference technology for a benchmark.


Now suppose that we do know that the technology is described by the production function




y = f (x).

(2.1) 
Then, y*A = f (xA) is the maximum output producible from input xA. Similarly, y*B = f (xB) is the maximum output that can be produced from xB.  We can measure the technical efficiency of a firm by comparing its actual output with the maximum producible quantity from its observed input. This is an output-oriented measure of efficiency.   For firm A, the output-oriented technical efficiency is
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(2.2a)
Similarly, for firm  B, 
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(2.2b)

If firm A produced the maximum producible output ( y*A ) from input xA  its average productivity would have been
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whereas at the observed input-output level, its productivity is
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Thus, an alternative characterization of its output-oriented technical efficiency is
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(2.3a)
Similarly,
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(2.3b)
In this sense, the technical efficiency of a firm is its productivity index relative to a hypothetical firm  producing the maximum output possible from the same input quantity that the observed firm  is using.

Thus,
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(2.4a)

and
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(2.4b)

In Figure 2.1, we measure input x along the horizontal axis and output y up the vertical axis. Points PA and PB represent the input-output bundles of firms A and B respectively. Average productivity of A is equal to the slope of the line OPA. Similarly, slope of OPB measures the average productivity of B. Because the input-output combinations of the two firms are actually observed, we know that these two are feasible points. 


Different information is necessary, as noted above, to measure productivity and efficiency. First, in order to measure the average productivities of the two firms and to compare their productivities, we do not need to know anything beyond these two points
. In particular, we do not need to know what other input-output bundles are feasible. That is, no knowledge of the technology is necessary. 


In order to determine the efficiency of A, we need the point P*A showing the maximum output y*A producible from A's input quantity xA. Similarly, point P*B provides a benchmark for firm  B. Location of these two reference points depends upon the functional form and parameters of the production frontier f (x). For firm A,
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Similarly, for firm B,
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These ratios are measures of output-oriented technical efficiency. The graph of the production function y = f (x) is the frontier of the production possibility set defined by the underlying technology. Points P*A and P*B are vertical projections of the points PA and PB onto the frontier. In both cases, we hold the observed input bundle unchanged and expand the output level till we reach the frontier. This is known as the output-augmenting or output-oriented approach.


 An alternative is the input-saving or input-oriented approach. This is shown in Figure 2.2. In this case, the output level (yA or yB) remains unchanged and input quantities are reduced proportionately till the frontier is reached. For firm A, the input-oriented projection on to the frontier would be the point 
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The pair of input-oriented technical efficiency measures for the two firms are as follows:
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As before,
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In practice, whether the input- or the output-oriented measure is more appropriate would depend on whether input conservation is more important than output augmentation.

Generally the input- and output-oriented measures of technical efficiency of a firm will be different. The exception is in the case of constant returns to scale (CRS) when both approaches yield the same measure of efficiency. Suppose that the observed input-output combination is (x0, y0). Further, the maximum producible output from x0 is y0* while the minimum input quantity that can produce y0 is x0*. Thus, both (x0, y0*) and (x0*, y0) are technically efficient points lying on the frontier. For the input- and output-oriented technical efficiency measures to be equal, we need
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This is equivalent to
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Thus, the average productivity at two different points on the frontier remains the same. This, of course, implies constant returns to scale.



Before we elaborate on the case of CRS, we note that a firm  may be more productive without being more efficient than another firm . Suppose that
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Then,
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Clearly, firm B is more efficient that firm A. At the same time,
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Thus, A is more productive without being more efficient than B. 


Suppose that firm A actually produces y*A rather than yA from input xA. In that case, both  
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In that case, firm A is more productive without being more efficient than firm B.


We now consider the case of constant returns to scale. For a single-output, single-input technology, the CRS frontier is a ray through the origin as shown in Figure 2.3. Here the production function is of the form



f (x) = k x,   k > 0. 

Along this frontier (i.e., at every point on this frontier) average productivity is the constant k.


As before,
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Similarly,
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But, points 
[image: image43.wmf] ,

P

 ,

P

 

 ,

P

B

*

A

A

*

*

*

*

 and
[image: image44.wmf]P

*

B

 are all on the same ray through the origin. Hence,



[image: image45.wmf]TE

 

=

 

TE

A

I

A

O

 and 
[image: image46.wmf].

 

TE

 

=

 

TE

B

I

B

O



Thus, when the technology exhibits CRS, input- and output-oriented measures of technical efficiency are identical. Further,
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But, under CRS, AP*A = AP*B. Hence, when the technology exhibits constant returns to scale,
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(2.5)
Therefore, higher productivity always implies greater efficiency only under CRS.


2.4 Multiple Input, Multiple Output Technology:

Once we step outside the simplified world of single-input, single-output production, the concept of average productivity measured by the output-input quantity ratio breaks down. Even in the relatively simple case of one-output, two-input production, we can no longer discuss average productivity in an unequivocal manner.


Assume that firm A uses x1A of input 1 and x2A of input 2 to produce the scalar output yA. Similarly, firm B produces output yB using x1B of input 1 and x2B of input 2. Now we have two different sets of average productivities:
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 for firm  B.

It is inappropriate to treat firm A as more productive than firm B whenever AP1A exceeds AP1B because it is possible that at the same time AP2B exceeds AP2A. 


A firm's average productivity in respect of one input depends on the quantity of the other input as well. Therefore, measuring a firm's productivity relying on a single input disregarding other inputs is wrong. Unfortunately, this was the common practice in the U.S. Bureau of Labor Statistics and other important agencies for many years. Major business economists often compare output per man-hour across regions or over time to study "productivity changes" in manufacturing. But unless one includes the quantities of capital, energy, and other inputs, such productivity measures fail to reflect total factor productivity.


In the single-output, multiple-input case, we need to aggregate the individual input quantities into a composite input. We can then measure productivity by the ratio of output quantity to the quantity of this composite input. When multiple outputs are involved, a similar aggregate measure of output is also needed. One practical approach uses market prices of inputs for aggregation. Suppose that r1 and r2 are the prices of the two inputs. Then,
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and
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are the aggregate input quantities for A and B, respectively. In that case,
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(2.7a)

and
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(2.7b)
But, obviously, the aggregate input bundles represent the input costs of the two firm s. Thus, a firm 's average productivity is merely the inverse of its average cost (AC). That is,
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Now suppose that each firm produced two outputs: y1 and y2 .The output prices are q1 and q2, respectively. Then the aggregate outputs of the two firm s are measured as follows:
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and
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In that case,
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(2.8a)
and
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(2.8b)
Thus, a firm 's average productivity is merely its (gross) rate of return on outlay. The firm with a higher rate of return is deemed to be the more productive one.


While this approach is simple and appealing from the perspective of a competitive market, input and output prices are not always available. This is especially true in the service sector (like education, public safety, etc.) where prices are seldom available for outputs. Moreover, in the presence of monopoly the market prices of inputs or outputs would be distorted. What we prefer, therefore, is a measure of productivity that would not require the use of market prices.


Consider, again, a single-output, multiple-input production technology. Assume further that constant returns o scale holds. Let 
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(2.9)

But, under CRS,
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Thus, it is possible to construct the aggregate input quantity as
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(2.10)

In this case,
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(2.11)

Similarly, for firm B producing output 
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(2.12)

As was pointed out earlier, in this case of CRS, the productivity index of firm B relative to firm A is merely the ratio of their respective technical efficiency levels.


It may be noted that when market prices are actually available optimizing behavior of competitive firms would result in the prices of individual inputs being equated to the corresponding values of their marginal products. Thus,
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(2.13)

where ri is the price of input i and q is the output price. In that case,



[image: image75.wmf] ,

 

=

 

 

TC

TR

x

r

y

q

 

=

 

AP

A

A

iA

i

n

=1

i

A

A

å



(2.14)

where 
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refer to the total revenue and the total cost of firm  A. Similarly, for firm  B producing output yB from input xB,
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(2.15)

This, it may be noted, is the return to the dollar criterion proposed by Goergescu-Roegen (1951, p 103).


Of course, one cannot take this approach when market prices are not available. In fact, even when prices exist, they may not be appropriate weights for aggregation. For example, a firm with higher market power may have higher output prices relative to a firm without market power. In such cases, using actual prices for aggregation will exaggerate productivity or efficiency of the former. When market prices cannot or should not be used, we need to construct shadow prices of inputs for aggregation. For a competitive profit-maximizing firm, the price of any input deflated by the output price equals the marginal productivity of the input. Therefore, we can use these marginal productivities as shadow prices. Under CRS, the production function is homogeneous of degree 1 in inputs. Thus, the input quantity index (like XA and XB) is also homogeneous of degree 1. Unlike the market prices, the shadow prices of inputs are not uniform across firms. Rather, these shadow prices depend on the input bundle at which the marginal productivities are evaluated.


In order to measure the technical efficiency of any observed input-output bundle one needs to know the maximum quantity of output that can be produced from the relevant input bundle. One possibility is to explicitly specify a production function. The value of this function at the input level under consideration denotes the maximum producible output quantity. The more common practice is to estimate the parameters of the specified function empirically from a sample of input-output data. Because the least squares procedure permits observed points to lie above the fitted line, in a stochastic frontier model one includes a composite error, which is a sum of a one-sided disturbance term representing shortfalls of the actually produced output from the frontier due to inefficiency and a two-sided disturbance term representing upward or downward shifts in the frontier itself due to random factors.  For the econometric procedure requires one must select a particular functional form (e.g., the Cobb Douglas ) out of a number of alternatives. At the same input bundle x0 the value attained by f(x0) will depend on the functional form chosen. Further, the parameter estimates are also sensitive to the choice of the probability distributions specified for the disturbance terms.


Data Envelopment Analysis (DEA) is an alternative nonparametric method of measuring efficiency that uses mathematical programming rather than regression. Here, one circumvents the problem of specifying an explicit form of the production function and makes only a minimum number of assumptions about the underlying technology. Farrell (1957) formulated a linear programming model to measure the technical efficiency of a firm with reference to a benchmark technology characterized by constant returns to scale. This efficiency measure corresponds to the coefficient of resource utilization defined by Debreu (1951) and is the same as Shephard’s distance function.(1953).

In DEA, we construct a benchmark technology from the observed input-output bundles of the firms in the sample. For this we make the following general assumptions about the production technology without specifying any functional form. These are fairly weak assumptions and hold for all technologies represented by a quasi-concave and weakly monotonic production function.

(A1) All actually observed input-output combinations are feasible. An input-output bundle (x, y) is feasible when the output bundle y can be produced from the input bundle x. Suppose that we have a sample of N firms from an industry producing m outputs from n inputs. Let xj =(xij, x2j,…,xnj) be the input bundle of firm j (j = 1,2,…,N) and yj = (y1j, y2j,…, ymj) be its observed output bundle. Then, by (A1) each (xj, yj) (j =1,2,…, N) is a feasible input-output bundle.

(A2) The production possibility set is convex. Consider two feasible input-output bundles (xA, yA)and (xB, yB) . Then the (weighted) average input-output bundle 
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(A3) Inputs are freely disposable. If (x0, y0) is feasible, then for any x 
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 x0, (x, y0) is also feasible.

(A4) Outputs are freely disposable. If (x0, y0) is feasible, then for any y 
[image: image85.wmf]£

 y0, (x0, y) is also feasible.

If additionally we assume that constant returns to scale holds,

(A5) If (x, y) is feasible, then for any k
[image: image86.wmf]³

 0, (kx, ky) is also feasible.

It is possible to empirically construct a production possibility set satisfying assumptions (A1-A5) from the observed data without any explicit specification of a production function.  Consider the input-output pair 
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is feasible. Thus, using (A1-A4), the input-output combination 
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Therefore, based on the observed input-output quantities and under the assumptions (A1-A5), we can define the production possibility set or the technology set as follows:
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(2.17)
Here the superscript C indicates that the technology is characterized by constant returns to scale.

Now consider the output-oriented technical efficiency of firm t producing output y t from the input bundle x t. We want to determine what is the maximum output (y*) producible from the same input bundle x t.. Suppose that (* is the maximum value of ( such that (x t, ( y t) lies within the technology set. Then 
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and the output-oriented technical efficiency of firm t is
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(2.18)
The linear programming (LP) problem for measuring the output-oriented technical efficiency is formulated in the following section.


In order to evaluate the input-oriented technical efficiency of any firm, we examine whether and to what extent it is possible to reduce its input(s) without reducing the output(s). This is quite straightforward when only one input is involved. In the presence of multiple inputs, a relevant question would be whether reducing one input is more important than reducing some other input. When market prices of inputs are not available, one way to circumvent this problem is to look for equi-proportionate reduction in all inputs. This amounts to scaling down the observed input bundle without altering the input proportions. The input-oriented technical efficiency of firm t is (*  where



(* = min ( : ((xt, yt) ( TC.

(2.19)


Note that 
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Obviously, under CRS, 
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 That is, the input- and output-oriented technical efficiency measures are identical in this case.

2.4 Data Envelopment Analysis

Charnes, Cooper, and Rhodes (1978, 1981) introduced the method of Data Envelopment Analysis (DEA) to address the problem of efficiency measurement for decision making units (DMUs) with multiple inputs and multiple outputs in the absence of market prices. They coined the phrase decision making units in order to include non-market agencies like schools, hospitals, and courts, which produce identifiable and measurable outputs from measurable inputs but generally lack market prices of outputs (and often of some inputs as well). In this book, we regard a DMU as synonymous with a firm.

Suppose that there are N firms each producing m outputs from n inputs. Firm t uses the input bundle 
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As noted above, measurement of average productivity requires aggregation of inputs and outputs. But no prices are available. What we would need in this situation is to use vectors of "shadow" prices of inputs and outputs. 


Define 
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 as the shadow price vector for inputs and 
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 the shadow price vector for outputs. Using these prices for aggregation we get a measure of average productivity of firm t as follows:
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(2.20)
Note that the shadow price vectors used for aggregation vary across firms. Two restrictions are imposed, however. First, all of these shadow prices must be non-negative, although zero prices are admissible for individual inputs and outputs. Second, and more importantly, the shadow prices have to be such that when aggregated using these prices, no firm's input-output bundle results in average productivity greater than unity. This, of course, also ensures that APt ( 1 for each firm t. These restrictions can be formulated as follows:
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In general, there are many shadow price vectors (u t, v t) satisfying these restrictions. Out of them we choose one that maximizes APt as defined above.


This is a linear fractional functional programming problem and is quite difficult to solve as it is. There is, however, a simple solution
. Note that neither the objective function (APt ) nor the constraints are affected if all of the shadow prices are multiplied by a non-negative scale factor k (>0). Therefore, define
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and
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Then the optimization problem becomes
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Now, set
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Then, wt’xt = 1 and the problem becomes



[image: image125.wmf].

 

)

n 

 

...,

 

,

 

2

 

,

 

1

 

=

 

i

 

(

  

;

 

0

 

 

w

 

:

)

 

m

 

,...,

 

2

 

,

 

1

 

=

r 

 

(

   

;

 

0

 

 

p

 

;

 

1

 

=

 

x

 

w

 

 

);

 

N

,

 

..

 

,

 t 

,

 

,...

 

2

 

,

 

1

 

=

 

j

 

(

   

;

 

0

 

 

x

 

w

 

 

-

 

y

 

p

 

  

.

 t 

.

 

s

 

y

 

p

 

max  

it

rt

it

it

n

1

=

i

ij

it

n

1

=

i

rj

rt

m

1

=

r

rt

rt

m

1

=

r

³

³

£

å

å

å

å

       (2.25)
This is a linear programming (LP) problem and can be solved using the simplex method.


Several important points require emphasis. First, the shadow prices of inputs cause the value of the observed input bundle xt of the firm under evaluation to equal unity. As a result, the value of the output bundle  itself (pt’yt) becomes a measure of its average productivity. Secondly, at prices  (p t,w t ) the observed input-output bundle of no firm in the sample would result in a positive surplus of revenue over cost. If one interpreted the input prices as the imputed values of these scarce resources, then if the prices chosen are such that the imputed value of any input bundle is less than the imputed valuation of the output bundle it produces, then clearly the resources are being under-valued and the imputed input prices should be revised upwards. Similarly, if the output prices reflect the cost of the inputs drawn away from other uses to produce one unit of the output produces, then a total imputed value of the output bundle exceeding the total imputed cost of the input bundle used would imply that the output bundle is over valued. Finally, when constant returns to scale is assumed, the efficient production correspondence



F(x, y) = 0

(2.26)
is homogeneous of degree zero.

Thus,
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Further, under competitive profit-maximization
, price of output j is proportional to 
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Hence, when shadow prices are derived from the technology, the imputed profit of the firm is zero.

    This constraint applies to every firm including firm t, the one under consideration. As a result, the maximum value of the aggregate output Yt is unity implying that 
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Thus, the optimal solution of this LP problem yields a measure of the output-oriented technical efficiency of firm t. 


For simplicity, consider the two-input, two-output case. Let y t = (y1t , y2t) and xt = (x1t , x2t). Then the LP problem becomes
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The dual of this LP is the problem
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Define 
[image: image132.wmf]q

f

1

 

=

 

 and 
[image: image133.wmf] 

 

=

 

j

j

q

l

m

. Then minimization of ( is equivalent to maximization of (.  In terms of the redefined variables, the LP problem now becomes
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Thus, clearly, 
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Example2.1. Table 1 reports the observed input and output quantities for 6 firms.

	PRIVATE 
        Firm

input/output
	  A
	  B
	  C
	  D
	  E
	  F

	 output 1 (y1)

 output 2 (y2)

 input 1 (x1)         input 2 (x2)
	  4

  2

  2

  3
	  9

  4

  7

  5
	  6

  3

  6

  7
	  8

  6

  5

  8
	  7

  5

  8

  4
	  11

   8

   6

   6






   Table 2. 1.

In order to evaluate the technical efficiency of firm C, we solve the following LP problem:
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(2.31)
Note that the output quantities of firm C appear as coefficients of -( in the left hand sides of the inequalities whereas its input quantities appear on the right hand sides of the constraints.


The optimal solution of this problem is
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This means that if we construct a reference firm (say C*) by combining 66.7% of the input-output bundles of firm F  with the input-output bundle of firm A, then this new firm would produce 11.33 units of y1 and 7.33 units of y2 using 6 units of x1 and 7 units of x2. Comparison of this potential output bundle with the actual output levels of firm C reveals that output y1 can be expanded by a factor of 1.889 while output y2 can be increased by a factor of 2.444. Note that this new firm does not require more of any input than is actually used by firm C. Thus, it is possible to expand every output by at least the factor 1.889. This is measured by (* in the optimal solution. Hence, a measure of technical efficiency of firm C is
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This technical efficiency measure, unfortunately, fails to reflect the full extent of potential increases in all of the outputs individually. In the present case, although y1 can be increased by 88.9% only, y2 can be expanded all the way up by 144%. Nor does it show any potential reductions in individual inputs that are feasible simultaneously with increases in outputs although such is not the case here. These LP models yield radial measures of efficiency. While it is true that for any individual firm, say firm t, the largest output bundle with the same output-mix as 

( yt1, yt2) that can be produced from the input bundle of firm t, is ((* y*1, (* y*2) , it is often possible to expand individual (although not all) outputs by a factor larger than (*. Similarly, we may not be entirely using up all the individual components of the observed input bundle of the firm under consideration in order to produce the expanded output bundle.


Take another look at (2.30). Suppose that the optimal solution is 
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Then 
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(2.33)


Define the output slack variables s1+ = y1t* -(*y1t and s2+ = y2t* - (*y2t.  The input slack variable scan be similarly defined as s-1 =x1t – x1t* and s-2 = x2t – x2t*. It may be recalled that an input-output bundle (x,y) is regarded as Pareto efficient only when (a) it is not possible to increase any output without either reducing some other output or increasing some input and (b) it is not possible to reduce any input without increasing some other input or reducing some output. Thus, (xt*, yt*) is Pareto efficient. But (xt, (t*yt) is not unless all output and input slacks are equal to zero.

Including appropriate slack variables in the constraints, we get, at the optimal solution
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Here 
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 are the output slacks and 
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 are input slacks at the optimal solution. Whenever any output slack is strictly positive, it is possible to expand that particular output by the amount of the output slack even after it has been expanded by a factor (* (( 1). Suppose that in a particular application we get (* = 1.25. This means that we can increase both outputs by 25%. In this case, technical efficiency of the firm is 0.80. Now suppose that  s1+* = 10. This implies that we can further increase output 1 by 10 units. Hence, 0.80 does not fully reflect the extent of its inefficiency. Moreover, if any one of the input slacks is strictly positive, the implication is that above expansion of the output bundle can be achieved while reducing individual inputs at the same time.


In a revision of their original model Charnes, Cooper, and Rhodes (1979) introduced penalties in the objective function for strictly positive input and output slacks. 


Their revised output-oriented model was:
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Here ( is an infinitesimally small positive number (selected by the researcher). By including input and output slacks in the objective function, we ensure that 
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 whenever any of slack variables is strictly positive at the optimal solution. Thus a firm will be rated as fully efficient only when 
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 equals 1 and all the slacks are equal to 0 at the optimal solution. Otherwise, its efficiency will be less than unity even when 
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 equals 1.


Consider the revised form of the input-oriented model:
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(2.36a)
The dual of this LP problem is
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(2.36b)
The only difference between this problem and its earlier specification is that now we have a lower bound on the shadow prices. 


On solving the primal problem we obtain the input and output bundles
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The pair 
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 is a Pareto efficient production plan.


However, using the optimal value of the objective function from one of the revised models (either
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) would be problematic. Computationally, 
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 will not be exactly equal. Conceptually, inclusion of the slacks in the objective function raises a problem of aggregation because unlike ( or (, the input and output slacks are not unit free. Finally, the efficiency measure obtained would not be invariant to the numerical value of ( chosen by the analyst.


At present, the overall consensus in the literature is that presence of positive slacks in the optimal solution should be interpreted as merely signifying that the efficient radial projection of ( x t, y t) is not Pareto efficient. Beyond that, the revised objective function value should not be used to obtain a scalar measure of technical efficiency. One should rather report the slacks separately along with the radial efficiency measure. In a later chapter we will return to the question of incorporating slacks in a scalar measure of efficiency.

2.4 An Example of Output-Oriented D.E.A. on SAS:
Example2.2

Table 2.2 reports the output and input levels of a sample of 30 electric utilities from Korea. The output is measured by megawatt hours of power generated. The three inputs are kilowatt hours of installed capacity, labor (man-years), and fuels (tonnes of oil equivalent). For the DEA models the data were rescaled
 by dividing each input and output variable by its sample mean and multiplying by 1000. The appropriate LP problem (in SAS) for firm 6 is shown in Exhibit 2A. Note that (  is included in the left hand side of the inequality for the output. The output inequality is of the "greater than or equal to" type. The input inequalities, on the other hand, are of the "less than or equal to" type. Output and input quantities of all firms appear on the left-hand sides of the restrictions. The right hand side includes the quantities of the firm under evaluation (firm6 in this case).


Exhibit 2B reports the optimal solution of the LP problem specified in exhibit 2A. The objective function value (1.301866) shows that the quantity of power generated by this firm can be expanded by 30.019% The output-oriented technical efficiency of firm firm6 is 0.768 (which is the inverse of the optimal value of
[image: image163.wmf]f

). In the "variable summary" section firms 7 and 25 have "activity" greater than 0. Thus, at the optimal solution, only (7 and (25  will be strictly positive. The hypothetical comparison unit for firm 6 is a firm that uses 5.262% of the input bundle of firm 7 and 60.527% of the inputs of firm 25 to produce a similarl linear combination of the output levels of these two firms. This reference firm would produce 30.019% more of the output compared to the actual performance of firm 6. The negative "reduced cost" associated with any non-basic firm shows how the objective function would be affected if it entered the basis. The rows identified as OBS_1 through OBS_3 are the input slack variables. Note that there is a positive slack (371.342 units) associated with the capital input (capacity). No slack exists in thelabor or fuel inputs, however This implies that the 30.187% increase in the output can be achieved while reducing the capacity input by these amount of the slack at the same time..

Finally, the "constraint summary" section shows that the "activity" levels for labor anf fuel are equal to the "RHS" value. Thus, these input constraints are binding. The dual activity associated with them are the shadow prices of these inputs. On the other hand, the "activity" level for capacity is 656.582 while the "RHS" is 1027.924. This results in the slack of 371.342 units shown earlier. 
2.5 Summary:

Productivity of a firm is measured by the ratio of the output produced to the input used. We do not need to know the production technology in order to measure productivity. Efficiency, on the other hand, compares the actual output from a given input with the maximally producible quantity of output. Thus, knowledge of the reference technology is critical for efficiency measurement. In the multiple-input, multiple-output case, individual inputs and outputs need to be suitable aggregated. In the absence of market prices, one can employ the method of DEA, which endogenously generates "shadow prices" of inputs and outputs for aggregation.

Guide to the Literature:

Debreu (1951) addressed the question of resource utilization at the aggregate level. Subsequently, Shephard (1953) introduced the Distance function as an alternative characterization of the technology. Farrell (1957) defined technical and allocative efficiency as two separate components of the economic efficiency of a firm and developed the formal linear programming model for measuring technical efficiency. Introduced by Charnes, Cooper, and Rhodes (1978, 1981) the method of DEA generalized Farrell’s measure of technical efficiency from the single output to the multiple output case. See Forsund and Sarafoglou (2002) for an overview of the developments the literature subsequent to Farrell’s paper that led to the introduction of the DEA methodology.

Charnes, Cooper, Lewin, and Seiford (1994) offer a brief over view of the primal and dual specifications 

along with a number of extensions of the basic CCR model. They also trace the chronology of development the literature subsequent to the seminal CCR paper through an interesting flow chart.  Ali (1994) offers an in depth discussion of the computational aspects of DEA in the same volume.

                                        Table 2.2 Input-Output Data for Korean Electric Utilities

                       firm    Capacity    Labor         Fuel      Output

                          1     706.70     643.39     648.95     614.66

                          2    1284.90    1142.20    1101.65    1128.39

                          3    1027.92    1749.44     531.19     533.52

                          4    1027.92    1019.30     640.32     611.80

                          5    1027.92    1033.76     640.41     619.68

                          6    1027.92     527.72     448.10     404.99

                          7    2055.85    1048.22    2136.09    2276.89

                          8    2055.85    1055.45    2140.03    2278.26

                          9    2055.85    1062.68    2140.18    2172.23

                         10      51.40      86.75     111.28      71.72

                         11      51.40     101.21      91.63      73.40

                         12      51.40      93.98      91.92      73.88

                         13      51.40     101.21      92.24      73.83

                         14    1669.35    1612.09    1585.23    1548.44

                         15     308.38     910.87     344.51     260.83

                         16     308.38     903.64     344.48     258.85

                         17     256.98    1178.34     273.29     181.65

                         18     256.98    1185.57     273.28     179.92

                         19    1027.92    1366.30    1185.60    1076.19

                         20     642.45     751.83     699.30     586.16

                         21    1027.92     838.57    1090.23     959.15

                         22    1027.92     824.12    1090.26     958.38

                         23     385.47    1655.46     362.30     278.13

                         24     865.64     809.66     559.96     660.53

                         25     906.03     780.74     554.62     673.12

                         26     256.98    1069.91     221.73     246.69

                         27     256.98    1033.76     228.01     252.86

                         28    2878.19    1828.96    3509.60    3708.16

                         29    2878.19    1821.73    3510.85    3709.64

                         30    2569.81    1763.90    3352.76    3528.04
Source: Table 1 of S.U. Park and J.B. Lesourd , International

Journal of Production Economics, Vol 63, 2000, pp 59-67.

Notes: (a) In the original source, capacity is measured in kilo-watt hours, labor in man-years, fuel in tones of oil equivalent, and output in mega-watt hours. In this Table, each input or output variable has been scaled by its sample mean and multiplied by 1000.

       Exhibit 2A. Output-oriented DEA LP Problem for Firm 6

    Firm      # 1     # 2     # 3     # 4     # 5     # 6     # 7     # 8

 capital   706.698 1284.90 1027.92 1027.92 1027.92 1027.92 2055.85 2055.85

   labor  643.389 1142.20 1749.44 1019.30 1033.76  527.72 1048.22  1055.45

    fuel   648.946 1101.65  531.19  640.32  640.41  448.10 2136.09 2140.03

  output   614.660 1128.39  533.52  611.80  619.68  404.99 2276.89 2278.26

 objective    0.000    0.00    0.00    0.00    0.00    0.00    0.00    0.00

        # 9    # 10    # 11   # 12     # 13    # 14    # 15    # 16    # 17

    2055.85  51.396  51.396 51.3962  51.396 1669.35 308.377 308.377  256.98

    1062.68  86.749 101.207 93.9782 101.207 1612.09 910.865 903.636 1178.34

    2140.18 111.276  91.632 91.9232  92.244 1585.23 344.508 344.483  273.29

    2172.23  71.720  73.405 73.8759  73.834 1548.44 260.830 258.852  181.65

       0.00   0.000   0.000  0.0000   0.000    0.00   0.000   0.000    0.00

       # 18    # 19    # 20    # 21    # 22    # 23    # 24    # 25    # 26

     256.98 1027.92 642.452 1027.92 1027.92  385.47 865.640 906.033  256.98

    1185.57 1366.30 751.825  838.57  824.12 1655.46 809.658 780.742 1069.91

     273.28 1185.60 699.303 1090.23 1090.26  362.30 559.963 554.623  221.73

     179.92 1076.19 586.162  959.15  958.38  278.13 660.532 673.120  246.69

       0.00    0.00   0.000    0.00    0.00    0.00   0.000   0.000    0.00

       # 27      # 28      # 29      # 30        phi   _type_     _rhs_

     256.98   2878.19   2878.19   2569.81      0.000    <=      1027.92

    1033.76   1828.96   1821.73   1763.90      0.000    <=       527.72

     228.01   3509.60   3510.85   3352.76      0.000    <=       448.10

     252.86   3708.16   3709.64   3528.04   -404.985    >=         0.00

       0.00      0.00      0.00      0.00      1.000    max         .

               Exhibit 2B SAS Output of Output-oriented CCR DEA Model for Firm 6

                                       The LP Procedure

                                        Solution Summary

                        Objective Value                     1.3018660735

                                           Variable Summary

                         Variable                                      Reduced

                     Col Name     Status Type        Price  Activity      Cost

                       1 COL1            NON-NEG         0         0 -0.319551

                       2 COL2            NON-NEG         0         0 -0.352614

                       3 COL3            NON-NEG         0         0 -0.672975

                       4 COL4            NON-NEG         0         0 -0.455153

                       5 COL5            NON-NEG         0         0 -0.441649

                       6 COL6            NON-NEG         0         0 -0.301866

                       7 COL7     BASIC  NON-NEG         0  0.052621         0

                       8 COL8            NON-NEG         0         0 -0.009117

                       9 COL9            NON-NEG         0         0 -0.274152

                      10 COL10           NON-NEG         0         0 -0.128571

                      11 COL11           NON-NEG         0         0 -0.082295

                      12 COL12           NON-NEG         0         0 -0.078966

                      13 COL13           NON-NEG         0         0 -0.082727

                      14 COL14           NON-NEG         0         0 -0.680701

                      15 COL15           NON-NEG         0         0 -0.557802

                      16 COL16           NON-NEG         0         0 -0.559748

                      17 COL17           NON-NEG         0         0 -0.686168

                      18 COL18           NON-NEG         0         0 -0.693319

                      19 COL19           NON-NEG         0         0 -0.775215

                      20 COL20           NON-NEG         0         0 -0.555766

                      21 COL21           NON-NEG         0         0 -0.621882

                      22 COL22           NON-NEG         0         0 -0.618105

                      23 COL23           NON-NEG         0         0  -0.85466

                      24 COL24           NON-NEG         0         0 -0.055598

                      25 COL25    BASIC  NON-NEG         0 0.6052773         0

                      26 COL26           NON-NEG         0         0  -0.35681

                      27 COL27           NON-NEG         0         0 -0.342487

                      28 COL28           NON-NEG         0         0 -0.123406

                      29 COL29           NON-NEG         0         0 -0.119913

                      30 COL30           NON-NEG         0         0 -0.160087

                      31 phi      BASIC  NON-NEG         1 1.3018661         0

                      32 _OBS1_   BASIC  SLACK           0 371.34196         0

                      33 _OBS2_          SLACK           0         0 -0.000398

                      34 _OBS3_          SLACK           0         0 -0.002437

                      35 _OBS4_          SURPLUS         0         0 -0.002469

                                         Constraint Summary

                        Constraint            S/S                          Dual

                    Row Name       Type       Col       Rhs  Activity  Activity

                      1 _OBS1_     LE          32 1027.9237 656.58174         0

                      2 _OBS2_     LE          33 527.72356 527.72356 0.0003978

                      3 _OBS3_     LE          34 448.10376 448.10376 0.0024368

                      4 _OBS4_     GE          35         0         0 -0.002469

                      5 _OBS5_     OBJECTVE     .         0 1.3018661         .


































































� This is true only in the single-output, single-input case. When multiple inputs and/or outputs are involved, we may need to use the technology for aggregation.


� This approach was introduced earlier by Charnes and Cooper (1968).


� Consider the profit maximization problem





	max � EMBED Equation.3  ���subject to the constrain � EMBED Equation.3  ���The Lagrangian takes the form


		� EMBED Equation.3  ���


and the first order conditions for a maximum are


		� EMBED Equation.3  ��� and � EMBED Equation.3  ���








� We examine the effect of data transformation on the DEA efficiency score later in Chapter 4.





PAGE  
46

[image: image165.wmf].

0

)

,

(

=

y

x

F

[image: image166.wmf])

,

(

)

,

,

(

y

x

F

x

w

y

p

y

x

L

j

i

i

i

j

j

l

l

-

-

=

å

å

[image: image167.wmf]j

j

F

p

l

=

[image: image168.wmf].

i

i

F

w

l

-

=

_967017034

_973861875

_1081272877

_1081676253

_1088593497

_1088593609

_1088593743

_1088593779

_1088593810

_1088593660

_1088593534

_1088593573

_1088593514

_1081676672

_1088593399

_1088593444.unknown

_1081685247.unknown

_1081685409.unknown

_1081685432.unknown

_1081685398.unknown

_1081685187.unknown

_1081676321.unknown

_1081676469

_1081676272

_1081670908

_1081672684.unknown

_1081676024.unknown

_1081672673.unknown

_1081273525

_1081277029

_1081277309

_1081273586

_1081273017

_1059373989.unknown

_1059377061.unknown

_1059378497.unknown

_1059378765.unknown

_1074626006.unknown

_1074626205.unknown

_1074626273.unknown

_1059378892.unknown

_1059378654.unknown

_1059378746.unknown

_1059378611.unknown

_1059377252.unknown

_1059378294.unknown

_1059377194.unknown

_1059374506.unknown

_1059376870.unknown

_1059377034.unknown

_1059376803.unknown

_1059376810.unknown

_1059374086.unknown

_1059373700.unknown

_1059373778.unknown

_1059373884.unknown

_1059373745.unknown

_973862130

_973863728

_1059373666.unknown

_973863663.unknown

_973862090

_972928319.unknown

_973861576

_973861623

_973861691

_973861601

_973861294

_973861424

_973860911

_967017039

_967017042

_967017050

_972928142.unknown

_967017048

_967017041

_967017037

_967017038

_967017035

_951043342

_951044374

_951044496

_951044831

_967017025

_967017030

_967017032

_967017029

_956035134

_967017019

_951044852

_951044888

_951044839

_951044760

_951044817

_951044824

_951044809

_951044519

_951044689

_951044513

_951044421

_951044479

_951044490

_951044427

_951044396

_951044406

_951044384

_951044045

_951044280

_951044346

_951044364

_951044340

_951044260

_951044275

_951044152

_951043393

_951043853

_951044010

_951044039

_951043998

_951043796

_951043814

_951043593

_951043763

_951043542

_951043586

_951043532

_951043369

_951043377

_951043354

_951030773

_951030895

_951043232

_951043291

_951043319

_951043246

_951030902

_951030904

_951030916

_951043221

_951030905

_951030903

_951030899

_951030900

_951030896

_951030815

_951030883

_951030894

_951030881

_951030776

_951030814

_951030775

_951030721

_951030733

_951030759

_951030772

_951030758

_951030731

_951030732

_951030726

_951030710

_951030716

_951030720

_951030714

_951030706

_951030707

_951030704

