Chapter 9. Efficiency Analysis with Market Prices

9.1 Introduction

In DEA models for measuring input-oriented technical efficiency, the objective was to contract all inputs at the same rate to the extent possible without reducing any output. In practice, however, some inputs are more valuable than other inputs and conserving such inputs would be more efficient than saving other inputs. When market prices of inputs are available, the firm would seek to minimize the total input cost for a given level of output. This would mean not only that inputs are changed by different proportions but also that some inputs may actually be increased while others are reduced when that is necessary for cost-minimization. Our discussion of DEA, so far, has made no use whatsoever of prices of inputs and/or outputs. Even in our discussion of non-radial measures of efficiency, although disproportionate changes in inputs and outputs were allowed, we did not consider the possibility that some inputs could actually be increased or that some outputs could be reduced. This is principally due to the fact that DEA was originally developed for use in a non-market environment where prices are either not available at all or are not reliable, even if they are available. This may give the impression that when accurate price data do exist, it would be more appropriate to measure efficiency using econometric methods with explicitly specified cost or profit functions and not to use DEA. This, however, is not the case. DEA provides a nonparametric alternative to standard econometric modeling even when prices exist and the objective is to analyze the data in order to assess to what extent a firm has achieved the specified objective of cost minimization or profit maximization. 

In this chapter we develop DEA models for cost-minimization and profit maximization by a firm that takes input and output prices as given. Section 9.2 begins with a brief review of the cost-minimization problem of a firm facing a competitive input market and presents Farrell’s decomposition of cost efficiency into two factors measuring technical and allocative efficiency.  Section 9.3 presents the DEA models for cost minimization in the long run when all inputs are variable. The concept of economic scale efficiency is introduced in section 9.4. The problem of cost-minimization in the short run in the presence of quasi-fixed inputs is described in section 9.5. Section 9.6 provides an empirical example of DEA for cost-minimization. In section 9.7 the output quantities are also treated as choice variables with output prices treated as given and the cost-minimization problem is generalized to a profit-maximization problem. The relevant DEA model is presented in section 9.8. An additive decomposition of profit efficiency that parallels Farrell’s multiplicative decomposition of cost efficiency is shown in section 9.9. . Section 9.10 includes an empirical application of DEA to a profit-maximization problem. The main points of this chapter are summarized in section 9.11.

9.2  Cost Efficiency and its Decomposition
Consider the cost-minimization problem of a firm that is a price-taker in the input markets and produces a pre-specified output level. Many non-for-profit organizations like hospitals, schools, etc., fit this description. A hospital, for example, does not select the number of patients treated. The output level is exogenously determined. It still has to selects the inputs so as to provide this level of care at the minimum cost. For simplicity, we consider a single output, two input production technology. Suppose that an observed firm uses the input bundle x0 = (x10, x20) and produces the output level y0. The prices of the two inputs are w1 and w2, respectively. Thus, the cost incurred by the firm is C0 = w1x10 + w2 x20. The firm is cost efficient if and only if there is no other input bundle that can produce the output level y0 at a lower cost. 

Define the production possibility set


T = {(x1, x2; y): (x1, x2) can produce y}                           (9.1a)
and the input requirement set for output y0 



V(y) = {(x1, x2) : (x1, x2) can produce y}                           (9.1b)

Then the cost minimization problem of the firm can be specified as

                            min  w1x1 + w2 x2 

     s.t.                    ( x1, x2 )
[image: image1.wmf]Î

 V(y0 ).



(9.2)
Suppose that an optimal solution of this problem is x* = (x1*, x2*). Then the minimum cost is



C* 
[image: image2.wmf]º

 C( w1, w2; y0 ) = w1x1* + w2x2*.

Note that, by assumption, x0 
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V(y0) and is, therefore, a feasible solution for the minimization problem (9.2).Hence, by the definition of a minimum, C( w1, w2; y0 ) = w1x1* + w2x2* 
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 C0 = w1x10 + w2 x20. The firm is cost efficient if and only if C0 = C*. Following Farrell (1957), the cost efficiency of the firm can be measured as
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(9.3)
Now consider, as an aside, the input bundle xT= (x0  which is the efficient radial projection of the input bundle x0 for the output level y0 . The cost of this technically efficient bundle xT = ((x1, (x2) is



CT = (*(w1x1 + w2x2) =β*C0.                 9.(4)

Because ( 
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1, CT 
[image: image7.wmf]£

C0. Again, because xT 
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V(y0), C* 
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Farrell introduced the decomposition of cost efficiency 
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                     (9.5)
The two components of cost efficiency (() are (i) (input-oriented) technical efficiency ,( , and (ii) allocative efficiency, (, where
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(9.6)
Note that both factors, (  and ( , lie in the (0,1) interval. The overall cost efficiency (() measures the factor by which the cost can be scaled down if the firm selects the optimal input bundle x* and performs at full technical efficiency. When technical efficiency is eliminated, both inputs are scaled down by the factor ( and that by itself would lower the cost by this factor. The allocative efficiency factor (() shows the by how much the cost of the firm can be further scaled down when it selects the input mix that is most appropriate for the input price ratio faced by the firm in a given situation. The two distinct sources of cost inefficiency are: (a) technical inefficiency in the form of wasteful use of inputs and (b) allocative inefficiency due to  selection of an inappropriate input mix. 


Cost efficiency and its decomposition is illustrated diagrammatically in Figure 9.1. The point A represents the observed input bundle x0 of a firm and the curve q0q0 is the isoquant for the output level y0 produced by the firm. Thus, all points on and above this line represent bundles in in the input requirement set V(y0). The point B where the line OA intersects the isoquant q0q0 is the efficient radial projection of x0 . It represents the bundle xT=((x10,(x20). The expenditure line GH  through the point A is the isocost line



w1x1 + w2x2 = C0 = w1x10 + w2x20.

Similalry, the line through B shows the cost (CT) of the technically efficient bundle xT at these prices. Finally, the point C where the expenditure line JK is tangent to the isoquant q0q0 shows the bundle that produces output y0 at the lowest cost. The line JK is the isocost line



w1x1 + w2x2 = C* = w1x1* + w2x2*.

Therefore, the cost of the bundle represented by the point D on the line OA is also C*.
Hence, the cost efficiency of the firm using input x0 to produce output y0 is



( = 
[image: image12.wmf]OA

OD

OE

OJ

C

C

=

=

0

*

.
This is decomposed into the two factors
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In order to minimize cost, the firm would have to move from point A to point C switching from the input bundle x0 to the optimal bundle x*. This can be visualized as a two-step move. First, it moves to the point B  by eliminating technical inefficiency. This lowers the cost from C0 to CT. But, even though all points on the line q0q0 are technically efficient, they are not equally expensive. At the input prices considered in this example, C* is the least cost bundle. Compared to CT, the firm can the lower cost even further by substituting input 1 for input 2 till it reaches the point C*. Of course, when the input price ratio is such that point B itself is the tangency point with the correspondingly sloped expenditure line, B itself is the optimal point. In that case, there is no need to alter the input mix, and allocative efficiency equals unity.


We now consider a numerical example of measurement and decomposition of cost efficiency.

Suppose that the production function is
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(9.7)
A firm uses the input bundle (x10=4, x20 =9) to produce output y0 =6. The input prices are (w1=3,w2=2).
Thus, its actual cost is C0 = 30. We want to find out what is the least cost of producing the output y0 at these input prices when the technology is represented by the production function specified in (7) above.

We first solve the cost minimization problem of the firm for arbitrary values of the parameters (w1,w2, y). 

Set up and minimize the Lagrangian function
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(9.8)
The first order conditions for a minimum are:
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(9.9a)
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(9.9b)

      


[image: image19.wmf]0

2

2

1

=

-

-

=

¶

¶

x

x

y

L

l

                      (9.9c)
Solving (9.9a-c) simultaneously we obtain
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(9.10a)
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(9.10b)
and
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 (9.10c)
Thus, for y0 = 6 and (w1 = 3, w2 = 2), C* = 
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 A measure of the cost efficiency of the firm is
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That is, the firm can reduce its cost to nearly a half of what it is spending on the bundle x0 by selecting instead the input bundle (x1 = 
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To obtain the measure of technical efficiency, we solve for the value of ( that satisfies
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(9.11)
In the present example,
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Therefore, a measure of the firm’s allocative efficiency is



( =
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The measures of technical and allocative efficiency imply that firm can reduce its cost by more than 43% of its actual expenses by eliminating technical efficiency and further by a bout a third of this lower cost by appropriately changing its input mix.

9.3 DEA for Cost Minimization
In the numerical example above the technology was represented by an explicit production function. It is possible, however, to leave the functional form of the technology unspecified and yet to obtain a nonparametric measure of the cost efficiency of a firm using DEA. For this, we define the production possibility set as the free disposal convex hull of the observed input-output bundles, if variable returns to scale is assumed. In the case of constant returns to scales, we use, instead, the free disposal conical hull of the data points.

As in the previous chapters, we start with the observed input-output data from N firms. Let 

yj =(y1j, y2j, …, ymj) be the m-element output vector of firm j while xj = (x1j, x2j, …, xnj) is the corresponding 

n-element input bundle. Recall that the empirically constructed production possibility set under VRS  is
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  (9.12a)

and the corresponding input requirement set for any output vector y is
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     (9.12b)
Then, for a target output bundle y0 and at a given input price vector w0, the minimum cost under the assumption of variable returns to scale is



C* = min w0’x : x
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V(y0).


(9.13)
The minimum cost is obtained by solving the DEA LP problem:



min 
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(9.14)
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The optimal solution of this problem yields the cost minimizing input bundle x* = (x1*, x2*, …, xn*) and  the objective function value shows the minimum cost. It should be noted that at the optimal solution all the inequality constraints involving the inputs are binding. That is, there cannot be any input slacks at the optimal bundle. This is intuitively obvious. When any slack is present in any input, it is possible to reduce the relevant input by the amount of the slack without reducing any output. Because all inputs have strictly positive prices, this would lower the cost without affecting outputs. That, of course, would imply that the input bundle unadjusted for slacks could not have been cost minimizing.  Thus, the optimal input bundle will necessarily lie in the efficient subset of the isoquant for target output bundle. Unlike the input constraints, the output constraints need not be binding. The dual variable associated with the constraint for any individual output is the marginal cost of that output. When the constraint is non-binding, the relevant marginal cost is zero.


We now consider a simple example of cost minimization for the 1-output , 2-input case. Table9 .1 below shows the output and input data from 7 hypothetical firms.

                                             Table9. 1. Output and Input Quantity Data

                 Firm                 
1
2
3
4
5
6
7

              output (y)           12             8          17             5          14           11            9

              input 1(x1)            8             6          12             4          11             8            7

              input 2 (x2)           7             5            8             6            9             7          10

Suppose that we want to evaluate the cost efficiency of firm #5 that faces input prices w1 = 10 and w2 = 5.
The actual cost of firm #5 is C0 = 155. The DEA problem to be solved is:



min 
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(9.15)
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The optimal solution of (9.15) is



x1* = 9.6, x2* = 7.5, (1* = 0.6, (3* = 0.4, (j*= 0 (j
[image: image45.wmf]¹

1,3), C*=130.
Thus, the cost efficiency of this firm is
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The input-oriented BCC DEA for firm #5 yields a measure of technical efficiency



( = 0.87273.

Hence the allocative efficiency is



( = 
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9.4 Economic Scale Efficiency
Consider the average cost of a single-output firm 
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Economies of scale are present at any given output level if AC(w,y) falls as y increases. Similarly, when AC(w,y) rises with y, diseconomies of scale are present. In the multi-output case, average cost is not defined in the usual sense. We may, however, define the ray average cost for a given output bundle y0 as
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(9.17)
As in the single output case, scale economies (diseconomies) are present when the ray average cost declines (increases) with an increase in the output scale. In production economics the output level (scale) where the average cost (ray average cost) reaches a minimum is called the efficient scale of production. The dual or economic scale efficiency of a firm is measured by the ratio of the minimum (ray) average cost attained at this efficient scale and the average cost at its actual production scale. This measure shows by what factor a firm can reduce it average cost (ray average cost) by altering its output scale to fully exploit economies of scale.


The minimum average cost can be obtained by exploiting the following two useful propositions:

(P1) Locally constant returns to scale holds  at the output where the average cost (ray average cost) is minimized; and

(P2) When constant returns to scale holds everywhere, the average cost (ray average cost) remains constant.

Consider, first, the most productive scale size (MPSS) of a given input mix (x) in the single output case. Recall that a feasible input-output combination (x0, y0) is an MPSS for the specific input- and output-mix  if for every feasible input-output combination (x, y) satisfying x = (x0 and y = (y0,
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Further, locally constant returns to scale holds at (x0, y0) if it is an MPSS (Banker (1984), proposition 1).


Next note that if the input bundle x* minimizes the average cost at the output level y* , then 

(x*, y*) is an MPSS.. Suppose this is not true. Then, by the definition of an MPSS there exist non-negative scalars ((,() such that ((x*, (y*) is a feasible input-output combination satisfying 
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Define x**= (x* and C**= w’x**. Then, at input price w, the minimum cost of producing the output bundle ((y*) cannot be any greater than C**. This implies that 


AC (w, (y*) =
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But, by assumption 
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Thus,

     AC ( w, (y*) < AC ( w, y*).
Hence, y* cannot be the output level where average cost reaches a minimum. This shows that the average cost minimizing input-output combination must be an MPSS and, therefore, exhibit locally constant returns to scale.  The proof of this proposition in the multiple output case is quite analogous.


Now consider (P2). For this, we need to show that, under globally constant returns to scale, the dual cost function C*= C(w,y) is homogenous of degree 1 in y. Again, consider the single output case. Suppose that the input bundle x0* minimizes the cost of producing the output level y0. Now consider the output level y1 = ty0 and the input bundle x1*=tx0*.  We need to show that x1* minimizes the cost of the output y1. Suppose that this is not true. Then there must exist some other input bundle x1** that produces the output y1 at a lower cost. Hence, w’x1** < w’x1* = t w’x0*.  Now define x0** = 
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x1**.  Then w’x1** < w’x0*. But, by virtue of globally constant returns to scale, the input x0** = 
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y1. That means that x0* does not minimize the cost of the output y0. This results in a contradiction. Therefore, if x0* minimizes the cost of the output y0 then tx0* must minimize the cost of output ty0. This proves that the dual cost function is homogeneous of degree 1 in y and the average cost remains constant.


Figure 9.2 illustrates the relation between the average cost curves under the alternative assumptions of variable and constant returns to scale, respectively. The U-shaped curve ACA shows the average cost curve under the VRS assumption. The horizontal line ACB , on the other hand, shows the constant average cost under CRS. The two curves are tangent to one another at output y*. The average cost at this output level is (. This will also be the average cost at any output level when constant returns to scale is assumed.

Suppose that C** is the minimum cost of producing the output level y0 relative to a CRS production possibility set. Then a measure of the minimum average cost under VRS is
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The average cost at output y0 is shown in Figure 9.2 by the point D on the ACA curve and is
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and the minimum average cost is




[image: image61.wmf].

0

*

*

0

r

=

=

y

C

Ey


Thus the economic scale efficiency of the firm is



ESE = 
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At the most productive scale size the ray average productivity for a given input mix reaches a maximum. It is not clear, however, why one would like to change all inputs proportionately altering only the scale of the input bundle but not the input mix. When input prices are available, the total cost of an input bundle can be regarded as an input quantity index. Then minimizing average cost is the same as maximizing the average productivity of this composite input. This is also equivalent to maximizing the “return for the dollar”.


In order to obtain the minimum average cost in the single output case, one solves the following DEA problem for the unit output level under the CRS assumption:

               
c** =  min 
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Note that the optimal value of the objective function in (9.19) yields the minimum cost of producing 1 unit of the output and is the constant average cost for all output levels under CRS. But, as shown above, this will also be the minimum average cost under VRS. Thus, the economic scale efficiency of the firm under investigation is
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But under CRS, the minimum cost of producing output y0 is



C** = c** y0.                                  

Hence,
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(9.21)
This means that the economic scale efficiency of the output level y0 can be measured simply by the ratio of its minimum cost under the assumption of CRS and the minimum cost under the assumption of VRS, respectively.

9.5 Quasi-Fixed Inputs and Short run Cost Minimization
In the discussion of the cost minimization problem of a firm, we have, so far, treated all inputs as choice variables. By implication, all inputs are variable inputs. In reality, however, some inputs may be quasi-fixed in the short run. For example, a firm may not alter the plant size even though the output level has changed because the adjustment cost entailed by the desired change in the capital input may overweigh the cost savings that might be derived from such change. In such situations, the quasi-fixed input will be treated as an exogenously determined parameter (like the level of output) rather than as a choice variable.


For simplicity, we consider the case of  a single quasi-fixed input, K, and partition the input vector as x = (xv, K), where xv= (x1, x2, …,xn-1) is the vector of the (n-1) variable inputs and K is the only quasi-fixed input. Let wv = (w1, w2, …, wn-1) be the corresponding vector of variable input prices and r be the price of the quasi-fixed input.

From the previous definition of an input requirement set, we may define the conditional input requirement set we may define the conditional input requirement set, we may define the conditional input requirement set for a given level of the quasi-fixed input K0  and a specific output level y0 as:


V(y0 ( K0) = { xv :( xv, K0) 
[image: image69.wmf]Î
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(9.22).
The short run cost minimization problem of the firm is to minimize wv’xv + rK0   subject to the restriction that xv 
[image: image70.wmf]Î

V(y0 ( K0). But rK0 is a fixed cost that plays no role in the minimization process. Hence, the firm needs only to minimize the cost of its variable inputs.


The DEA problem for variable cost minimization under VRS is



min 
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The dual variable associated with the output constraint is non-negative. It shows the short run marginal cost of the output. On the other hand, the dual variable for the quasi-fixed input constraint is non-positive. It shows by how much the total variable cost would decline with a marginal increase in the quantity of the quasi-fixed input. The negative of this dual variable is the shadow price of the quasi-fixed input. When this shadow price exceeds the market price (r), the firm is using too little of the quasi-fixed input for the output it is producing. On the other hand, if the market price exceeds the shadow price, it is using too much of the fixed input.

9.6 An Empirical Application: Cost efficiency in U.S. Manufacturing
In this example we use data on input and output quantities per establishment from the 1992 Census of Manufactures in the United States. There are 51 observations – one each for the 50 states and one for Washington D.C. Output (Q) in total manufacturing is measured by the gross value of production. The inputs included are (a) production workers (L), (b) non-production workers or employees (EM), (c) building and structures (BS), (d) machinery and equipment (ME), (e) materials consumed (MC), and

(e) energy (E). The output and input quantities are shown in Table 9.2a and the input prices are shown in Table 9.2b. Prices of materials consumed (MC) and machinery and equipment (ME) are assumed to be constant across states. The SAS program for the cost minimization LP problem for California (state #5) under the assumption of VRS is shown in Exhibit 9A. Note that the variables X1 through X6 are decision variables that represent the optimal quantities of the inputs. In the constraint for the output, the actual output quantity of State #5 appears on the right hand side of the inequality. The objective function coefficients for the X1-X6 columns are the corresponding (actual) input prices in State #5 and the _TYPE_  for this row is specified as MIN indicating that it is a minimization problem.


Exhibit 7B shows the relevant sections of the SAS output for this program. The objective function value shows the minimum cost (3.80177) and the optimal input bundle is

                   X1*(L) = 0.01762;   X2*(EM) = 0.01978; X3* (BS) = 0.00055;

                  X4*(ME) =0.13325; X5*(MC) = 1.80707;  X6*(E)  =  0.00655.

The cost of the observed bundle for State #5 was 4.5143. Thus, the cost efficiency is
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Comparison the actual and the optimal input bundles shows that the average firm in California uses more than the optimal quantities of  L, ME, MC, and E but less than the optimal quantities of EM and BS.
The input-oriented BCC DEA solution shows a value of technical efficiency (() equal to 0.973089. Hence, the level of allocative efficiency (() is 0.86535. This means that there is little room for cost reduction through elimination of technical inefficiency (only by 2.7%) without changing the input mix. The average firm in State #5 operates at close to full technical efficiency. There is, however, considerable rom for cost reduction through a change in the input proportions (about 13.5%). In fact, most of the observed cost inefficiency in this case derives from allocative inefficiency.


For an analysis of cost efficiency in the short run, the two capital inputs, BS and ME, can be treated as quasi-fixed. The optimal solution of the variable cost minimization problem yields an objective function value of 3.6801. The actual cost of the bundle of variable inputs used was 4.2689. This shows that in the short run when the machinery and equipment and building and structures are treated as quasi-fixed, the firm can lower its variable cost by about 13.8%. It is interesting to note that when the two types of capital inputs are treated as given, the optimal solution shows that the firm should reduce its consumption of materials while increasing the other variable inputs in order to minimize total cost in the short run.

9.7 Profit Maximization and Efficiency
In the discussion of cost efficiency, the output quantities of a firm are treated as parameters and the focus is on the choice of variable inputs in the short run and all inputs in the long run. This is not an inappropriate analytical framework for non-profit organizations like hospitals, schools, etc. But an overwhelming proportion of the economic activities in a developed (and also of most developing economies) is carried out by commercial firms operating for profit. For such firms, both quantities of output to be produced are also choice variables like the input quantities. The objective of the firm is to select the input-output combination that results in the maximum profit at the applicable market prices of outputs and inputs. The only constraint is that the input-output combination selected must constitute a feasible production plan.

The profit maximization problem of a competitive firm is


max ( = p’y – w’x

subject to   (x, y) 
[image: image78.wmf]Î

 T,


(9.24)

where  p = (p1, p2 ,…, pm ) is the vector of output prices and w = (w1, w2 ,…, wn )  is the vector of input prices.


Consider, first, the single-input, single-output case. Let the production function



y = f(x).


(9.25a)
Define the production possibility set



T = { (x, y) : y 
[image: image79.wmf]£

 f(x) }
(9.25b)
The firm maximizes the profit by selecting the optimal pair (x, y) within T.

The Lagrangian for this constrained optimization problem is
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(9.26)
and the first order conditions for a maximum are
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(9.27a)
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(9.27b)

and
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(9.27c)
From (9.27a-b) we obtain
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This can be inverted to derive the input demand function
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(9.28b)

The output supply function is
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(9.28c)
and the profit function is
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(9.28d)
This is the dual profit function showing the maximum profit that a firm facing the production function defined in (9.25a) earns at prices p for the output and w for the input.


Define the normalized variables 
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Consider, now, all input-output combinations (not all of which need to be feasible) that yield the same normalized profit (say 
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) at a given pair of prices (w, p). The equation of this normalized iso-profit line would be
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(9.29a)
that can be alternatively expressed as
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(9.29b)
Given that both the input and the output price will be strictly positive, 
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The intercept in (9.29b) represents the level of normalized profit for any iso-profit line.

 In Figure 9.2 the curve OQ shows the production function. The actual input-output combination of the firm is (x0 , y0) shown by the point A. The profit earned here is
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 The line CD through the point A shows  input-output bundles all of which yield the normalized profit 
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The slope of this line measures the normalized input price 
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 The firm’s objective is to reach the highest iso-profit line parallel to the line OC that can be attained at any point on or below the curve OQ. The highest such iso-profit line is reached at the point B representing the tangency of the iso-profit line EF with the production function. The optimal input output bundle is (x*, y*). The intercept of this line OE equals the maximum normalized profit 
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The line OG is a ray through the origin with slope equal to 
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At any input level x the vertical distance between the production function and the point on the OG line shows the normalized profit earned if the firm produced the maximum output from the given input. At the actual input-output bundle (x0, y0) the firm does exhibit considerable technical inefficiency. The efficient input-oriented projection of the point A on to the production function OQ is the point H where the same output quantity y0  is produced from input x0*. The intercept of the iso-profit line JK through this technically efficient point measures the normalized profit 
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(9.30)
where 
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is the measure of the input-oriented technical efficiency of the firm. The firm earns the normalized profit 
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if it eliminates technical inefficiency from its observed input use. Note that all points on the production function OQ represent input-output combinations that are technically efficient. There is no reason to choose one over another on grounds of technical efficiency alone. Given the normalized input price 
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equal to the slope of the line OG, the firm can increase its profit, however,  by moving from the point H to the point B along OQ. This increase in profit is due to an improvement in the allocative efficiency of the firm. The firm maximizes profit by moving from point A to point B. This can be visualized as a two-step process. First, it eliminates technical inefficiency to move to the point H. As a result, the normalized profit increases from 
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In the second step, the firm moves from H to B. As a result, its normalized profit rises further from 
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Next consider a single-output, two-input example. Recall the production function (9.7) and the input prices (w1= 3, w2 = 2). Assume further that the output price is p = 8. Then, the profit earned by a firm producing output y0 =6 from the input bundle (x10 = 4, x20 = 9) is 
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18. For the parametrically given input and output prices (w1, w2, p), the profit maximization problem is:


max  
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(9.31)
The Lagrangian function to be maximized is
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(9.32)

The first order conditions for a maximum are:
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(9.33a)
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(9.33b)
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and
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(9.33d)
Solving the system of equations (9.33a-d) simultaneously, we get the input demand functions
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(9.34a) and
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(9.34b),

the output supply function
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(9.34c)
and the profit function
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(9.34d)
Evaluated at the output and input prices specified above,
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Thus, the unrealized or lost profit is
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Alternatively, the firm’s profit efficiency is
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Thus, the firm has an unrealized potential profit of 
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Alternatively,  its actual profit is a little under 50% of the maximum profit it can earn at these prices.

9.8 DEA for Profit Maximization
The profit-maximization problem of a multiple output, multiple input firm facing input and output prices w and p, respectively, can be formulated as the following DEA problem:


max 
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(9.35)
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The profit maximizing input and output quantities xi*(I=1,2,…,n) and yr*(r=1,2,…,m) are obtained along with the other decision variables (j* (j =1,2,…, N) at the optimal solution of this problem. The optimal value of the objective function 
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is the maximum profit that the firm can earn.
An important point needs to be noted in this context. For a bounded solution of the LP problem in (9.35) we must allow variable returns to scale. Without the restriction 
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is a feasible solution, then, for any arbitrary t>0, 
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is also a feasible solution. But, in that case, 
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also gets multiplied by t. Therefore, by making t arbitrarily large, we can increase the maximum profit indefinitely. Hence, for a finite (non-zero) profit, we must assume variable returns to scale.

9.9 Decomposition of Profit Efficiency

Banker and Maindiratta (1988) proposed a multiplicative decomposition of profit efficiency that parallels Farrell’s decomposition of cost efficiency. They decompose the ratio measure of profit efficiency as
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(9.36)
The first factor is the ratio of the actual profit to what the firm would earn if it eliminated (input-oriented) technical inefficiency and moved to the point H on the curve OQ. They define technical efficiency as
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(9.37)
In Figure 9.3 this technical efficiency factor is measured by the ratio 
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The other factor
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(9.38)
is defined by Banker and Maindiratta as allocative efficiency.
In Figure 9.2 this component of profit efficiency can measured by the ratio 
[image: image141.wmf].

OE

OJ



A potential problem with the ratio measure of profit efficiency is that if the actual profit is negative while the maximum profit is positive, the ratio becomes negative. On the other hand, if both actual and maximum profits are negative, the ratio exceeds unity  In the long run when all inputs and outputs are treated as choice variables, with free entry and exit, zero profit is always possible. Thus the maximum profit of a firm that has stayed in business should not be negative. But negative actual profit is still possible due to inefficiency.


A more serious problem with this decomposition by Banker and Maindiratta, however, is that their technical efficiency measure is not independent of prices. This is a serious limitation because technical efficiency of any firm should be determined by the technology only and should not depend on prices. To overcome this problem, Färe et al (2000) offer an additive decomposition of the difference measure of profit efficiency (() that circumvents the problem of price dependence of the technical efficiency component. One can exploit the identity 
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Here
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represents the lost or unrealized part of the maximum return on outlay. The first of the two individual components of 
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It is the measure of technical inefficiency. The other component 
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(9.41)
denotes the return on outlay lost due to allocative inefficiency.


Note that because the input-oriented technical efficiency lies between 0 and 1, so does 
[image: image148.wmf].

T

d


But 
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, which is non-negative by construction, can   actually exceed unity. As a result, the normalized difference measure of profit inefficiency can also exceed unity.

9.10  An Empirical Application to U.S. Banking

This section presents an example of using SAS to solve the DEA model for profit maximization using data relating to the operations of 50 large banks in the U.S. during the year 1996. The five outputs considered are: (i) commercial and industrial loans (y1), (ii) consumer loans (y2), (iii) real estate loans (y3), 

(iv) investments, and (v) other income. All outputs are measured in millions of current dollars. The inputs included are: (i) transaction deposits, (ii) non-transaction deposits, (iii) labor, and (iv) capital. Labor is measured in full time equivalent employees. Other inputs are measured in dollars. Following the usual practice in the banking literature, output prices are measured by dividing the revenue by the dollar value of the appropriate output. Similarly, prices of non-labor items are measured by dividing the relevant item of expenditure by the dollar value of the input. For price of labor, we divide the total wages and salaries by the number of employees. The output and input quantity and price data for the banks included in this example are reported in Tables 9.3a-d. 


Exhibit 9C shows the SAS program for the profit maximization problem for Bank #1. The variables A1 through A5 are the quantities of the output and B1 through B4 are the input quantities that the firm chooses in order to maximize profit. Note that in the objective function row the actual output prices faced by Bank #1 appear in the columns for the variables A1-A5. At the same time, the input prices appear in the objective function row with a negative sign in the columns for the variables B1-B4.. To solve the problem for other banks, one only needs to replace the output and (negatives of the) input prices in the objective function row.


Exhibit 9D shows the relevant sections of the SAS output for the profit maximization problem.

The objective function value 49.124182 shows the maximum profit that a bank can earn at the output and input prices faced by Bank #1. In this particular example, (49* equals unity while all other (js are equal to 0.
This means that the firm should merely select the actual input-output quantities of Bank #49 in order to earn this level of profit. The actual amounts of revenue earned and cost incurred by the bank under examination are 73.4929 and 43.3600, respectively. Thus, the amount of actual profit earned is 30.1329.

The actual (gross) return on outlay is 1.6949. The amount of unrealized profit is 18.9913 implying 
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It should be noted that the input-oriented technical efficiency (() equals unity. Hence, (T equals zero. No part of the unrealized profit is due to technical inefficiency. By implication all of the profit inefficiency is allocative.

9.11  Summary

When market prices of inputs and outputs are available, one can use DEA to measure the level of economic efficiency of a firm. The minimum cost of producing the observed output level of a firm can be obtained from the optimal solution of the relevant cost-minimization problem. The ratio of this minimum cost and the actual cost of the firm measures its cost efficiency, which can be decomposed into two separate factors representing its technical and allocative efficiency, respectively.  When outputs as well as inputs are choice variables, the appropriate format for efficiency analysis is the DEA model for profit maximization. The difference between the maximum and the actual profit normalized by the actual cost of a firm measures the  return on outlay lost due to inefficiency. It is possible to separately identify the contribution of technical and allocative inefficiency in a differential decomposition of the lost return on outlay.

Guide to the Literature:

A dual representation of the technology through an indirect aggregator function like the cost or the profit function is at the core of neoclassical production economics. Building on the earlier work of Hotelling and Shephard (1953) researchers have introduced various innovative specifications (like the Translog and the Generalized Leontief form) of the dual cost and profit functions to analyze the characteristics of the technology. Decomposition of cost efficiency into the technical and allocative efficiency components is due to Farrell (1957). Banker and Maindiratta (1998) carried out a parallel decomposition of profit efficiency. The additive decomposition of profit inefficiency (measured as the lost return on outlay) is due to Färe, Grosskopf, Ray, Miller, and Mukherjee (2000).

              Table 9.2a Output and Input Quantities: State Level Data

                                             from U.S. Census of Manufactures 1992

  OBS     V         L        EM        BS        ME       MC      ENER

   1   8.2572  0.044045  0.014848  .0014270  0.25796   4.1684  0.03118

   2   7.1181  0.023669  0.007101  .0005064  0.20237   4.0830  0.03286

   3   5.3844  0.021087  0.016471  .0005407  0.15661   2.1395  0.00718

   4   8.7708  0.045719  0.012190  .0009661  0.22014   4.7153  0.02010

   5   5.9327  0.022092  0.016479  .0005150  0.16738   2.5902  0.00686

   6   5.5128  0.019770  0.014464  .0005793  0.13482   2.4787  0.00800

   7   6.3889  0.027221  0.023846  .0005381  0.17822   2.2152  0.00635

   8  17.7167  0.042334  0.048168  .0007485  0.35834  10.4651  0.02789

   9   4.4072  0.008297  0.020087  .0004932  0.09563   0.9293  0.00121

  10   3.9262  0.017605  0.011232  .0003930  0.10792   1.7552  0.00720

  11   9.2876  0.040340  0.016513  .0007278  0.23170   4.7781  0.01976

  12   3.7374  0.012647  0.007549  .0003712  0.07814   1.9261  0.00284

  13   5.8745  0.024932  0.011184  .0008848  0.18020   3.1690  0.02067

  14   8.4058  0.031226  0.020374  .0007339  0.21677   4.0254  0.01463

  15  11.3526  0.046810  0.020047  .0012852  0.33154   5.5030  0.03144

  16  11.8150  0.040276  0.017812  .0010513  0.24163   6.0035  0.02718

  17  10.4075  0.036487  0.017825  .0010862  0.20940   5.6884  0.01876

  18  13.8676  0.046924  0.017181  .0010407  0.28718   7.0584  0.04122

  19  15.1141  0.031077  0.013068  .0011361  0.43197   9.2702  0.10789

  20   5.3115  0.030318  0.011091  .0011113  0.21364   2.3552  0.01828

  21   7.1500  0.026391  0.018379  .0006293  0.19245   3.1956  0.01510

  22   6.4034  0.026999  0.020363  .0008557  0.17705   2.5310  0.00579

  23   9.6275  0.034741  0.020719  .0008788  0.24166   5.0341  0.01350

  24   7.2206  0.028344  0.020994  .0005960  0.18535   3.4894  0.01097

  25   8.7361  0.049867  0.013417  .0011271  0.23175   4.5963  0.02217

  26   9.2734  0.033049  0.019100  .0007464  0.15388   4.7200  0.01333

  27   3.0190  0.011410  0.004288  .0003503  0.06526   1.7887  0.02228

  28  10.7881  0.035422  0.013962  .0007106  0.14460   6.2015  0.01554

  29   2.6890  0.014171  0.007846  .0003186  0.10184   1.1323  0.00602

  30   4.8364  0.025912  0.014200  .0005300  0.16890   1.8446  0.00481

  31   6.5414  0.022855  0.020534  .0005148  0.15037   2.7226  0.00981

  32   5.3512  0.016928  0.007712  .0008420  0.10940   2.7275  0.01050

  33   5.7122  0.022230  0.017085  .0006359  0.16363   2.2301  0.00731

  34  10.8546  0.051310  0.018716  .0010185  0.25026   4.9404  0.01831

  35   5.2859  0.018891  0.008696  .0005183  0.14123   3.1663  0.01635

  36  10.0225  0.037233  0.019894  .0010454  0.23080   4.8511  0.02604

  37   7.4102  0.026747  0.011614  .0007084  0.16284   3.7284  0.02129

  38   4.7141  0.021040  0.009835  .0005035  0.13538   2.3499  0.01536

  39   7.6928  0.033601  0.018907  .0007585  0.18576   3.4622  0.01474

  40   3.5574  0.022131  0.011065  .0004225  0.09209   1.4362  0.00571

  41  10.8181  0.056375  0.019446  .0011567  0.34648   5.0809  0.03657

  42   6.7800  0.028459  0.011136  .0009940  0.10990   4.0206  0.00822

  43  10.0773  0.048212  0.017390  .0009848  0.28077   4.8329  0.01991

  44   9.8220  0.026881  0.017154  .0008011  0.28424   5.3972  0.04413

  45   6.1665  0.026337  0.014772  .0008359  0.16238   2.9833  0.01630

  46   4.7367  0.022057  0.011103  .0004603  0.24948   1.8513  0.00598

  47  10.1611  0.043470  0.018945  .0007116  0.23755   4.2401  0.02136

  48   8.5364  0.023504  0.016322  .0007443  0.16075   4.9492  0.03010

  49   7.4723  0.031352  0.012675  .0008429  0.22872   3.3199  0.04817

  50   8.7849  0.036621  0.017508  .0009759  0.20659   4.2414  0.01719

  51   4.1237  0.011073  0.004498  .0003655  0.16799   2.4042  0.02559

                   Table 9.2b INPUT PRICE DATA

OBS
  PL
       PEM
       PBS
   PME    PMC
 PENER


1
20.9181
58.7455
52.045
1
1
7.8745


2
25.55
      57.2222
122.683
1
1
7.4601


3
22.9045
56.651
97.368
1
1
12.7827


4
18.7602
58.7966
53.488
1
1
9.05


5
24.0879
63.8647
151.622
1
1
13.7183 

6
25.4766
57.4295
84.186
1
1
7.9193 

7
27.8053
67.8758
124.39
1
1
15.8455 

8
27.2436
67.138
94.444
1
1
9.1559 

9
30.6842
58.9674
129.706
1
1
16.4462 

10
20.0558
55.038
103.077
1
1
9.0456


11
20.7316
58.0602
78.182
1
1
9.227


12
22.4884
49.8182
161.892
1
1
19.6685


13
22.3961
53.639
59.318
1
1
6.0062


14
25.4314
62.3123
87.857
1
1
9.7544


15
26.848
69.3505
66.136
1
1
6.9283


16
24.408
62.6686
56.739
1
1
7.0938


17
24.1202
61.1812
63.333
1
1
7.6703


18
23.139
64.8892
58.14
      1
1
6.994


19
26.3959
67.1134
61.905
1
1
5.4851


20
23.8261
63.3074
85.238
1
1
13.2558


21
26.2966
60.7399
105.111
1
1
11.8719


22
26
      63.2228
92
      1    
1
16.7225


23
32.1999
72.9258
79.767
1
1
10.8921


24
23.9791
58.3015
96
      1
1
8.8392


25
17.9185
56.8238
48.864
1
1
8.3507


26
23.2535
58.2437
65.581
1
1
8.6638


27
23.2038
57.2034
57.045
1
1
6.1162


28
21.656
54.3922
61.304
1
1
7.3294


29
21.7401
54.5204
117.105
1
1
11.043


30
24.3808
60.9154
114.048
1
1
18.978


31
25.3903
61.7404
130.25
1
1
11.9889


32
20.8296
52.0488
76.098
1
1
8.3613


33
24.2428
61.2633
112.632
1
1
12.6816


34
19.4408
58.6925
64.545
1
1
10.1348


35
20.4206
50.4655
60.455
1
1
5.2167


36
28.3533
68.3305
67.273
1
1
8.3725


37
23.9503
59.947
60.233
1
1
6.4092


38
23.9114
59.36
      81.905
1
1
6.6651


39
24.26
      61.8184
74.884
1
1
11.5317


40
20.8085
59.7593
101.463
1
1
11.317


41
20.8563
62.4463
62.727
1
1
8.4472


42
17.8379
48.2626
55
      1
1
7.9414

43
21.145
61.226
63.488
1
1
9.9394


44
24.3591
60.2699
82    
1
1
5.5978


45
21.5895
53.9732
68.182
1
1
6.4299


46
22.2399
64.0537
87.907
1
1
15.8117


47
22.5561
61.0526
91.333
1
1
7.7345


48
27.5966
66.1366
93.415
1
1
5.1643


49
26.4562
69.6283
48.043
1
1
6.471


50
24.8468
60.8194
60.182
1
1
7.7693

51
22.8594
52.5769
58.696
1
1
6.3005


Exhibit 9A. The SAS Program for Measuring the 

               Cost Efficiency of State #5 (California)

DATA QUAN9292;

INPUT OBS V   L   EM   BS  ME MC ENER ;

*RV=V*102.6/117.4;

*RME=ME*110.4/123.4;

*RMC=MC*105.3/117.9;

c=1;d=0;

DROP OBS;

CARDS;

   1   8.2572  0.044045  0.014848  .0014270  0.25796   4.1684  0.03118

   2   7.1181  0.023669  0.007101  .0005064  0.20237   4.0830  0.03286

   3   5.3844  0.021087  0.016471  .0005407  0.15661   2.1395  0.00718

   4   8.7708  0.045719  0.012190  .0009661  0.22014   4.7153  0.02010

   5   5.9327  0.022092  0.016479  .0005150  0.16738   2.5902  0.00686

   .    …         …        …          …         …        …       …

   .    …         …        …          …         …        …       …  

  46   4.7367  0.022057  0.011103  .0004603  0.24948   1.8513  0.00598

  47  10.1611  0.043470  0.018945  .0007116  0.23755   4.2401  0.02136

  48   8.5364  0.023504  0.016322  .0007443  0.16075   4.9492  0.03010

  49   7.4723  0.031352  0.012675  .0008429  0.22872   3.3199  0.04817

  50   8.7849  0.036621  0.017508  .0009759  0.20659   4.2414  0.01719

  51   4.1237  0.011073  0.004498  .0003655  0.16799   2.4042  0.02559

;

PROC transpose out=next;

dATA MORE; INPUT OBS X1 X2 X3 X4 X5 X6 _TYPE_ $ _RHS_;

CARDS;

1  0  0  0  0  0  0 >= 5.9327

2 -1  0  0  0  0  0 <= 0

3  0 -1  0  0  0  0 <= 0

4  0  0 -1  0  0  0 <= 0

5  0  0  0 -1  0  0 <= 0

6  0  0  0  0 -1  0 <= 0

7  0  0  0  0  0 -1 <= 0

8  0  0  0  0  0  0  = 1

9 24.0879   63.8647   151.622    1     1    13.7183   MIN    .

;

DATA LAST; MERGE NEXT MORE;

;

DROP OBS;

PROC PRINT;

PROC LP;

            Exhibit 9B The SAS Output of the Cost-Minimization 

                        DEA Problem for State #5 (California)

                 Solution Summary

             Terminated Successfully

 Objective Value                     3.8017721367

                       Variable Summary

        Variable                                      Reduced

    Col Name     Status Type        Price  Activity      Cost

      1 COL1            NON-NEG         0         0 1.4451897

      2 COL2            NON-NEG         0         0 1.1001931

      3 COL3            NON-NEG         0         0 0.6669724

      4 COL4            NON-NEG         0         0 1.1980196

      5 COL5            NON-NEG         0         0  0.712577

      6 COL6            NON-NEG         0         0  0.740349

      7 COL7            NON-NEG         0         0 0.5792778

      8 COL8            NON-NEG         0         0 2.3228306

      9 COL9     BASIC  NON-NEG         0 0.7348755         0

     10 COL10           NON-NEG         0         0 0.9430949

     11 COL11           NON-NEG         0         0 0.9706397

     12 COL12           NON-NEG         0         0 0.8153125

     13 COL13           NON-NEG         0         0 1.3258494

     14 COL14           NON-NEG         0         0  0.855845

     15 COL15           NON-NEG         0         0 0.7935547

     16 COL16           NON-NEG         0         0 0.4455407

     17 COL17           NON-NEG         0         0 1.0072757

     18 COL18           NON-NEG         0         0 0.2384873

     19 COL19           NON-NEG         0         0 1.8969621

     20 COL20           NON-NEG         0         0 1.1147312

     21 COL21           NON-NEG         0         0 0.7385528

     22 COL22           NON-NEG         0         0 0.6951602

     23 COL23           NON-NEG         0         0 1.0393762

     24 COL24           NON-NEG         0         0 1.1219336

     25 COL25           NON-NEG         0         0 1.3490749

     26 COL26           NON-NEG         0         0   0.75012

     27 COL27           NON-NEG         0         0 1.2568986

     28 COL28           NON-NEG         0         0 0.7820128

     29 COL29           NON-NEG         0         0  0.963133

     30 COL30           NON-NEG         0         0 0.7534767

     31 COL31           NON-NEG         0         0 0.6658366

     32 COL32           NON-NEG         0         0 0.6655944

     33 COL33           NON-NEG         0         0 0.5891071

     34 COL34           NON-NEG         0         0 0.3451474

     35 COL35           NON-NEG         0         0 1.3290086

     36 COL36           NON-NEG         0         0 0.7387113

     37 COL37           NON-NEG         0         0 0.7100325

     38 COL38           NON-NEG         0         0 1.0662666

     39 COL39           NON-NEG         0         0 0.7925463

     40 COL40           NON-NEG         0         0 0.9814283

     41 COL41           NON-NEG         0         0  1.050722

     42 COL42           NON-NEG         0         0 1.3208796

     43 COL43           NON-NEG         0         0 0.7385375

     44 COL44           NON-NEG         0         0 1.2831078

     45 COL45           NON-NEG         0         0 1.0877336

     46 COL46           NON-NEG         0         0 0.6341981

     47 COL47    BASIC  NON-NEG         0 0.2651245         0

     48 COL48           NON-NEG         0         0  1.389668

     49 COL49           NON-NEG         0         0 0.8862771

     50 COL50           NON-NEG         0         0 0.7814991

     51 COL51           NON-NEG         0         0 1.1571522

     52 X1       BASIC  NON-NEG   24.0879 0.0176222         0

     53 X2       BASIC  NON-NEG   63.8647 0.0197842         0

     54 X3       BASIC  NON-NEG   151.622 0.0005511         0

     55 X4       BASIC  NON-NEG         1 0.1332565         0

     56 X5       BASIC  NON-NEG         1 1.8070743         0

     57 X6       BASIC  NON-NEG   13.7183 0.0065523         0

     58 _OBS1_          SURPLUS         0         0 0.7884336

     59 _OBS2_          SLACK           0         0   24.0879

     60 _OBS3_          SLACK           0         0   63.8647

     61 _OBS4_          SLACK           0         0   151.622

     62 _OBS5_          SLACK           0         0         1

     63 _OBS6_          SLACK           0         0         1

     64 _OBS7_          SLACK           0         0   13.7183

                       Constraint Summary

        Constraint            S/S                          Dual

    Row Name       Type       Col       Rhs  Activity  Activity

      1 _OBS1_     GE          58    5.9327    5.9327 0.7884336

      2 _OBS2_     LE          59         0         0  -24.0879

      3 _OBS3_     LE          60         0         0  -63.8647

      4 _OBS4_     LE          61         0         0  -151.622

      5 _OBS5_     LE          62         0         0        -1

      6 _OBS6_     LE          63         0         0        -1

      7 _OBS7_     LE          64         0         0  -13.7183

      8 _OBS8_     EQ           .         1         1 -0.875768

      9 _OBS9_     OBJECTVE     .         0 3.8017721         .

                                         Table 9.3a   BANK OUTPUT QUANTITY  DATA

      Obs                Y1                   Y2                     Y3                     Y4                     Y5

   1     42.654    281.660    141.454     75.657    14.688

   2     32.985     70.183    109.357    191.057     4.318

   3     75.474      8.832    290.180    155.438     0.944

   4     57.935     74.259    196.960     98.871     2.433

   5     39.382     49.084    316.682     48.674     3.138

   6     41.054     33.290    247.589    148.686     3.751

   7     50.278     75.520    286.727     53.148     3.015

   8     87.693     52.779    165.261     56.463     9.432

   9     28.026     55.779    239.118    208.537     6.249

  10     58.602     31.585    278.365    128.449     4.912

  11     35.884     44.263    174.700    256.871     4.111

  12     44.125     48.241    210.124    158.738     3.225

  13     55.637     64.486    150.870    185.250     4.470

  14     31.702    105.386    200.102     85.255     6.652

  15     34.788     50.011    246.324    159.393     3.236

  16     56.553      6.625    222.897    157.066     6.156

  17     18.520    222.234    165.645     66.920     3.985

  18     44.031     29.020    243.223    171.917     5.783

  19     52.169     36.165    119.370    205.256     1.862

  20    120.032     87.585    208.670     87.041     6.371

  21     19.113     28.154    262.832    162.963     6.074

  22     45.141     14.585    225.703    169.499     4.402

  23     61.691    101.368    180.709     90.164     6.773

  24     65.723     86.496    249.611     52.840    11.689

  25     44.266     88.868    235.361    116.791     4.256

  26     38.908     75.033    229.876    111.597     2.511

  27    109.580     33.155    184.179    176.744     5.741

  28    159.743     35.745    156.233    107.137     3.785

  29     72.329     53.262    137.252    140.817     7.591

  30    106.340     23.693    226.540    161.803     5.431

  31     54.868     69.261    168.534    166.432     3.497

  32     32.195     35.251    209.341    143.877     4.257

  33     78.170    118.097    209.424    103.907    11.349

  34     84.317     54.948    229.375     99.756     6.116

  35     81.401     55.116    180.483    149.994     5.789

  36     40.884     10.652    233.734    186.361     4.739

  37     61.556     73.014    263.974    103.391     8.075

  38    112.470    105.948    239.786    139.941     3.848

  39     14.875    109.965     62.685    131.780     6.642

  40     59.532     78.519    187.906     59.538     9.140

  41     85.824     73.366    191.824    207.116     5.657

  42     79.859    100.083    230.688     88.693     4.363

  43     48.902      4.890    333.867     56.814     7.527

  44     30.466     42.900    289.771    156.866     3.087

  45     40.999      5.203    304.792    114.665     4.191

  46    279.037      0.428     28.666     27.217     9.760

  47     40.818     30.847    191.266    206.572     9.231

  48     63.333     86.147    167.996    280.677    16.237

  49     51.656    107.739    228.967     57.192    77.482

  50     17.836      6.684    204.330    321.243     4.704

           Table 9.3b BANK INPUT QUANTITY DATA

  Obs      X1         X2        X3        X4  

   1    111.805    434.194    0.411    19.356

   2    154.721    311.423    0.203     8.266

   3     76.975    396.428    0.083     5.795

   4     77.369    361.009    0.205     7.576

   5     33.051    424.549    0.189     9.207

   6    130.316    363.854    0.178     5.670

   7     95.421    369.313    0.185    11.238

   8    141.980    284.723    0.248     8.822

   9     84.012    422.808    0.192     7.861

  10     79.081    354.272    0.256     6.988

  11     36.780    382.783    0.142    10.189

  12     94.138    284.341    0.218    10.237

  13     64.621    316.446    0.144     3.070

  14    101.855    338.586    0.210    11.547

  15     99.539    316.927    0.270    20.199

  16    181.594    304.163    0.205     8.888

  17     79.715    382.693    0.255     7.698

  18    171.637    297.141    0.191     8.668

  19    108.916    287.656    0.184     6.237

  20    215.757    279.379    0.195     8.010

  21    116.651    340.618    0.214     5.253

  22     78.890    351.791    0.212     9.458

  23    171.298    285.875    0.251     5.186

  24    131.046    282.000    0.229     5.471

  25    129.676    316.831    0.226    10.430

  26    136.549    310.071    0.275     9.483

  27    168.394    301.344    0.261    18.676

  28    174.401    274.875    0.207     9.586

  29    174.940    302.552    0.247     5.857

  30    231.463    330.746    0.209    12.092

  31    108.419    327.439    0.251    11.223

  32    144.217    336.406    0.273    15.439

  33    221.628    294.729    0.259    10.933

  34     85.677    354.134    0.180     7.776

  35    139.870    337.857    0.280     3.926

  36    187.583    294.983    0.241     8.219

  37    118.168    369.407    0.273     9.955

  38    155.287    430.204    0.299     8.993

  39    223.944    283.096    0.186     8.244

  40    154.830    280.436    0.263     9.201

  41    131.127    365.442    0.320    16.014

  42     94.432    368.091    0.229     8.505

  43    222.651    282.545    0.299    15.718

  44    116.617    326.074    0.231     8.274

  45    193.806    236.212    0.175     5.151

  46     73.233    486.438    0.220     3.460

  47    151.344    349.154    0.359     8.551

  48    161.773    549.270    0.257     6.580

  49    179.098    354.372    1.313    12.878

  50     95.447    321.750    0.264    11.692

              Table 9.3c BANK OUTPUT PRICE DATA

 Obs       P1         P2         P3         P4       P5

   1    0.21967    0.13250    0.05154    0.063770     1

   2    0.07849    0.10477    0.06728    0.024000     1

   3    0.09960    0.07892    0.07404    0.060260     1

   4    0.09431    0.09999    0.07976    0.055500     1

   5    0.12155    0.12601    0.06853    0.068110     1

   6    0.08245    0.08567    0.08244    0.054700     1

   7    0.09453    0.07766    0.09412    0.069330     1

   8    0.09712    0.13740    0.05984    0.063564     1

   9    0.09591    0.09400    0.08016    0.057088     1

  10    0.29330    0.15533    0.03119    0.054917     1

  11    0.09380    0.09191    0.08498    0.051870     1

  12    0.10701    0.09200    0.08069    0.052900     1

  13    0.07427    0.14135    0.07607    0.064092     1

  14    0.09170    0.09085    0.08456    0.062401     1

  15    0.10423    0.07970    0.08195    0.055000     1

  16    0.10938    0.19668    0.07467    0.052700     1

  17    0.11134    0.08149    0.08404    0.076100     1

  18    0.12314    0.08218    0.06223    0.066590     1

  19    0.08449    0.08199    0.06468    0.055570     1

  20    0.08048    0.07669    0.08122    0.078040     1

  21    0.08743    0.12531    0.08745    0.065150     1

  22    0.10492    0.09640    0.07889    0.063493     1

  23    0.25077    0.07519    0.03253    0.056985     1

  24    0.08810    0.09345    0.07759    0.066976     1

  25    0.09987    0.10655    0.07983    0.069517     1

  26    0.12327    0.08522    0.07660    0.068174     1

  27    0.06890    0.11045    0.08624    0.068421     1

  28    0.08646    0.08351    0.08051    0.058400     1

  29    0.09664    0.11355    0.10683    0.073620     1

  30    0.10021    0.10328    0.08419    0.053299     1

  31    0.11752    0.09523    0.07430    0.060139     1

  32    0.07625    0.10590    0.08361    0.062129     1

  33    0.09687    0.11053    0.08966    0.059920     1

  34    0.08989    0.09938    0.07628    0.067625     1

  35    0.08437    0.09975    0.07544    0.054800     1

  36    0.08568    0.08271    0.09283    0.061853     1

  37    0.10053    0.10191    0.08727    0.046300     1

  38    0.09438    0.06856    0.08076    0.057238     1

  39    0.08760    0.13264    0.07739    0.060426     1

  40    0.10070    0.08664    0.07836    0.069367     1

  41    0.20274    0.08764    0.03422    0.061444     1

  42    0.09003    0.09947    0.07976    0.055920     1

  43    0.09431    0.20716    0.08438    0.077740     1

  44    0.09607    0.10193    0.08328    0.062289     1

  45    0.08456    0.12839    0.08187    0.066167     1

  46    0.10653    0.09346    0.03436    0.055150     1

  47    0.16385    0.18400    0.05278    0.057956     1

  48    0.09663    0.11140    0.07650    0.069500     1

  49    0.07426    0.09884    0.07540    0.067107     1

  50    0.07053    0.07346    0.08183    0.064001     1

             Table 9.3d BANK INPUT PRICE DATA

 Obs        W1           W2          W3          W4

   1     0.006905     0.054842     34.8856     0.22928

   2     0.010044     0.029718     32.3448     0.46443

   3     0.008522     0.049931     55.8070     0.12045

   4     0.013326     0.052387     29.3659     0.18598

   5     0.010741     0.046960     32.3120     0.23297

   6     0.001727     0.046073     28.3483     0.21746

   7     0.009547     0.058695     30.2270     0.11799

   8     0.008776     0.052089     37.4435     0.38540

   9     0.008606     0.043124     38.1719     0.24539

  10     0.013315     0.040720     31.3477     0.32055

  11     0.023355     0.045605     37.9507     0.14516

  12     0.007383     0.048108     28.8119     0.21520

  13     0.005184     0.044077     28.6736     0.20651

  14     0.002278     0.034839     30.4857     0.22517

  15     0.006148     0.041928     31.5185     0.15149

  16     0.010061     0.032657     50.4537     0.28904

  17     0.010299     0.035185     27.9412     0.20512

  18     0.015632     0.046608     40.7853     0.20558

  19     0.024422     0.051249     29.9565     0.24964

  20     0.013436     0.052527     32.8510     0.26841

  21     0.012207     0.049539     31.0280     0.45764

  22     0.006515     0.046061     34.9434     0.26390

  23     0.007875     0.042718     35.6892     0.61955

  24     0.005555     0.039862     35.3974     0.26595

  25     0.017027     0.045340     29.2080     0.21055

  26     0.008297     0.041249     34.3200     0.24096

  27     0.006633     0.049667     43.5402     0.18082

  28     0.000872     0.038396     42.7633     0.26966

  29     0.009243     0.046518     34.0810     0.45433

  30     0.006558     0.039988     43.5789     0.27464

  31     0.013881     0.047810     27.8486     0.18337

  32     0.008515     0.046685     29.3956     0.15804

  33     0.019831     0.047260     37.9380     0.16811

  34     0.010003     0.052525     30.1222     0.19792

  35     0.009652     0.048334     29.0357     0.68161

  36     0.012618     0.043379     48.0747     0.31099

  37     0.007904     0.043545     35.8901     0.25364

  38     0.012158     0.048689     31.0970     0.35316

  39     0.014352     0.046807     50.6290     0.29415

  40     0.004741     0.043525     35.4791     0.35811

  41     0.006627     0.048002     29.9063     0.18446

  42     0.009700     0.052302     34.5109     0.31193

  43     0.004905     0.034143     38.7590     0.29648

  44     0.009741     0.046244     29.1515     0.29236

  45     0.018446     0.044308     43.6743     0.56688

  46     0.007032     0.049080     49.7050     0.82601

  47     0.015567     0.024725     34.1309     0.42042

  48     0.004179     0.042660     35.5681     0.49635

  49     0.010257     0.047176     36.8104     0.81760

  50     0.008832     0.045887     36.4924     0.17918

Exhibit 9C SAS PROGRAM FOR THE DEA-LP FOR PROFIT-MAXIMIZATION 

                  BY BANK #1
 data qout;

 input obs y1-y5;

 drop obs;

 cards;

   1     42.654    281.660    141.454     75.657    14.688

   2     32.985     70.183    109.357    191.057     4.318

   3     75.474      8.832    290.180    155.438     0.944

   4     57.935     74.259    196.960     98.871     2.433

   5     39.382     49.084    316.682     48.674     3.138

   .       …          …         …           …         …

   .       …          …         …           …         …

  45     40.999      5.203    304.792    114.665     4.191

  46    279.037      0.428     28.666     27.217     9.760

  47     40.818     30.847    191.266    206.572     9.231

  48     63.333     86.147    167.996    280.677    16.237

  49     51.656    107.739    228.967     57.192    77.482

  50     17.836      6.684    204.330    321.243     4.704

;

DATA QIN; INPUT  OBS X1-X4;

drop obs;c=1;d=0;

   1    111.805    434.194    0.411    19.356

   2    154.721    311.423    0.203     8.266

   3     76.975    396.428    0.083     5.795

   4     77.369    361.009    0.205     7.576

   5     33.051    424.549    0.189     9.207

   .      …          …         …         …

   .      …          …         …         …

  45    193.806    236.212    0.175     5.151

  46     73.233    486.438    0.220     3.460

  47    151.344    349.154    0.359     8.551

  48    161.773    549.270    0.257     6.580

  49    179.098    354.372    1.313    12.878

  50     95.447    321.750    0.264    11.692

;

data qty; merge qout qin;

proc transpose out=next;

data more1;

input a1-a5;

cards;

-1 0 0 0 0

0 -1 0 0 0

0 0 -1 0 0

0 0 0 -1 0

0 0 0 0 -1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0.21967    0.13250    0.05154    0.063770     1

;

data more2;

input b1-b4 _type_ $ _rhs_;

cards;

0 0 0 0 >= 0

0 0 0 0 >= 0

0 0 0 0 >= 0

0 0 0 0 >= 0

0 0 0 0 >= 0

-1 0 0 0 <= 0

0 -1 0 0 <= 0

0 0 -1 0 <= 0

0 0 0 -1 <= 0

0 0 0 0   = 1

-0.006905    -0.054842    -34.8856    -0.22928 max .

;

data last; merge next more1 more2;

proc print;

proc lp;

run;

 Exhibit 9D The SAS Output for the Profit Maximization problem 

                     for Bank #1

                Solution Summary

             Terminated Successfully

              Objective Value                     49.124182486

                       Variable Summary

        Variable                                      Reduced

    Col Name     Status Type        Price  Activity      Cost

      1 COL1            NON-NEG         0         0 -18.99125

      2 COL2            NON-NEG         0         0 -37.56557

      3 COL3            NON-NEG         0         0 -32.05901

      4 COL4            NON-NEG         0         0 -36.89022

      5 COL5            NON-NEG         0         0 -43.62147

      6 COL6            NON-NEG         0         0 -38.06545

      7 COL7            NON-NEG         0         0 -36.83429

      8 COL8            NON-NEG         0         0 -28.58673

      9 COL9            NON-NEG         0         0 -35.97359

     10 COL10           NON-NEG         0         0 -35.12391

     11 COL11           NON-NEG         0         0 -34.41744

     12 COL12           NON-NEG         0         0 -35.05785

     13 COL13           NON-NEG         0         0 -27.82693

     14 COL14           NON-NEG         0         0 -35.04011

     15 COL15           NON-NEG         0         0 -40.87838

     16 COL16           NON-NEG         0         0 -35.28736

     17 COL17           NON-NEG         0         0 -31.01896

     18 COL18           NON-NEG         0         0 -32.45639

     19 COL19           NON-NEG         0         0 -36.14552

     20 COL20           NON-NEG         0         0 -13.92601

     21 COL21           NON-NEG         0         0 -39.33829

     22 COL22           NON-NEG         0         0  -39.8338

     23 COL23           NON-NEG         0         0 -27.11086

     24 COL24           NON-NEG         0         0 -20.91604

     25 COL25           NON-NEG         0         0 -32.33759

     26 COL26           NON-NEG         0         0 -38.87563

     27 COL27           NON-NEG         0         0  -25.2314

     28 COL28           NON-NEG         0         0 -16.32598

     29 COL29           NON-NEG         0         0 -30.29374

     30 COL30           NON-NEG         0         0 -25.00067

     31 COL31           NON-NEG         0         0 -35.13317

     32 COL32           NON-NEG         0         0  -45.6683

     33 COL33           NON-NEG         0         0 -16.77182

     34 COL34           NON-NEG         0         0 -27.09754

     35 COL35           NON-NEG         0         0 -29.44642

     36 COL36           NON-NEG         0         0 -37.82651

     37 COL37           NON-NEG         0         0 -30.53558

     38 COL38           NON-NEG         0         0 -22.40739

     39 COL39           NON-NEG         0         0 -38.46062

     40 COL40           NON-NEG         0         0  -30.7549

     41 COL41           NON-NEG         0         0 -27.58092

     42 COL42           NON-NEG         0         0 -27.18967

     43 COL43           NON-NEG         0         0 -40.44378

     44 COL44           NON-NEG         0         0 -37.36575

     45 COL45           NON-NEG         0         0 -33.79494

     46 COL46           NON-NEG         0         0 -10.44939

     47 COL47           NON-NEG         0         0 -38.48636

     48 COL48           NON-NEG         0         0 -22.71743

     49 COL49    BASIC  NON-NEG         0         1         0

     50 COL50           NON-NEG         0         0  -38.7947

     51 A1       BASIC  NON-NEG   0.21967    51.656         0

     52 A2       BASIC  NON-NEG    0.1325   107.739         0

     53 A3       BASIC  NON-NEG   0.05154   228.967         0

     54 A4       BASIC  NON-NEG   0.06377    57.192         0

     55 A5       BASIC  NON-NEG         1    77.482         0

     56 b1       BASIC  NON-NEG -0.006905   179.098         0

     57 b2       BASIC  NON-NEG -0.054842   354.372         0

     58 b3       BASIC  NON-NEG  -34.8856     1.313         0

     59 b4       BASIC  NON-NEG  -0.22928    12.878         0

     60 _OBS1_          SURPLUS         0         0  -0.21967

     61 _OBS2_          SURPLUS         0         0   -0.1325

     62 _OBS3_          SURPLUS         0         0  -0.05154

     63 _OBS4_          SURPLUS         0         0  -0.06377

     64 _OBS5_          SURPLUS         0         0        -1

     65 _OBS6_          SLACK           0         0 -0.006905

     66 _OBS7_          SLACK           0         0 -0.054842

     67 _OBS8_          SLACK           0         0  -34.8856

     68 _OBS9_          SLACK           0         0  -0.22928

                          Constraint Summary

        Constraint            S/S                          Dual

    Row Name       Type       Col       Rhs  Activity  Activity

      1 _OBS1_     GE          60         0         0  -0.21967

      2 _OBS2_     GE          61         0         0   -0.1325

      3 _OBS3_     GE          62         0         0  -0.05154

      4 _OBS4_     GE          63         0         0  -0.06377

      5 _OBS5_     GE          64         0         0        -1

      6 _OBS6_     LE          65         0         0  0.006905

      7 _OBS7_     LE          66         0         0  0.054842

      8 _OBS8_     LE          67         0         0   34.8856

      9 _OBS9_     LE          68         0         0   0.22928

     10 _OBS10_    EQ           .         1         1 49.124182

     11 _OBS11_    OBJECTVE     .         0 49.124182         .





































PAGE  
234

_1067709116.unknown

_1068111134.unknown

_1068143443.unknown

_1068148150.unknown

_1068282366.unknown

_1078765348.unknown

_1080711544.unknown

_1080711631.unknown

_1089102609.unknown

_1080711608.unknown

_1078765438.unknown

_1078766232.unknown

_1078767210.unknown

_1078765401.unknown

_1068314950.unknown

_1068315116.unknown

_1068315682.unknown

_1068752037.unknown

_1078765289.unknown

_1068315728.unknown

_1068315393.unknown

_1068315095.unknown

_1068314795.unknown

_1068314905.unknown

_1068282392.unknown

_1068148707.unknown

_1068281821.unknown

_1068282159.unknown

_1068281286.unknown

_1068148504.unknown

_1068148612.unknown

_1068148439.unknown

_1068144777.unknown

_1068147180.unknown

_1068147515.unknown

_1068147596.unknown

_1068147271.unknown

_1068144992.unknown

_1068145330.unknown

_1068144875.unknown

_1068143982.unknown

_1068144225.unknown

_1068144371.unknown

_1068144725.unknown

_1068144133.unknown

_1068143718.unknown

_1068143792.unknown

_1068143673.unknown

_1068141384.unknown

_1068142408.unknown

_1068142653.unknown

_1068143316.unknown

_1068142568.unknown

_1068141569.unknown

_1068141711.unknown

_1068141416.unknown

_1068133353.unknown

_1068133722.unknown

_1068134016.unknown

_1068133560.unknown

_1068132546.unknown

_1068132618.unknown

_1068111481.unknown

_1068108003.unknown

_1068110088.unknown

_1068110853.unknown

_1068111034.unknown

_1068111093.unknown

_1068110875.unknown

_1068110288.unknown

_1068110400.unknown

_1068110209.unknown

_1068108806.unknown

_1068109653.unknown

_1068109777.unknown

_1068109090.unknown

_1068108181.unknown

_1068108738.unknown

_1068108105.unknown

_1067883050.unknown

_1068025984.unknown

_1068107601.unknown

_1068107867.unknown

_1068107160.unknown

_1068024279.unknown

_1068025029.unknown

_1067883357.unknown

_1067715202.unknown

_1067715789.unknown

_1067879636.unknown

_1067715356.unknown

_1067712267.unknown

_1067714766.unknown

_1067709483.unknown

_1067538371.unknown

_1067582012.unknown

_1067600814.unknown

_1067677275.unknown

_1067708400.unknown

_1067708611.unknown

_1067678644.unknown

_1067602467.unknown

_1067602498.unknown

_1067600879.unknown

_1067600038.unknown

_1067600393.unknown

_1067600626.unknown

_1067600334.unknown

_1067599845.unknown

_1067599885.unknown

_1067539780.unknown

_1067581247.unknown

_1067581823.unknown

_1067581876.unknown

_1067581925.unknown

_1067581528.unknown

_1067580618.unknown

_1067581213.unknown

_1067540020.unknown

_1067538797.unknown

_1067539251.unknown

_1067539695.unknown

_1067539167.unknown

_1067538594.unknown

_1067538733.unknown

_1067538452.unknown

_1067453413.unknown

_1067517705.unknown

_1067538058.unknown

_1067538226.unknown

_1067519096.unknown

_1067517404.unknown

_1067517563.unknown

_1067453875.unknown

_1067450988.unknown

_1067453018.unknown

_1067453075.unknown

_1067452715.unknown

_1067452768.unknown

_1067451473.unknown

_1067450752.unknown

_1067450868.unknown

_1067450326.unknown

_1036304484.unknown

