                                                                     Chapter 3. 

                                                 VARIABLE RETURNS TO SCALE:

                               SEPARATING TECHNICAL AND SCALE EFFICIENCIES

3.1 Introduction
The DEA model presented in Chapter 2 measures technical efficiency of a firm relative to a reference technology exhibiting constant returns to scale everywhere on the production frontier. This, of course, is rather restrictive since it is unlikely that CRS will hold globally in many realistic cases. As a result, the CCR DEA model should not be applied in a wide variety of situations. In an important extension of this approach, Banker, Charnes, and Cooper (BCC) (1984) generalized the original DEA model for technologies exhibiting increasing, constant, or diminishing returns to scale at different points on the production frontier. 


This chapter develops the DEA LP models that are applicable when the technology does not exhibit constant returns to scale globally. Section 3.2 considers the relation between the scale elasticity and returns to scale. Banker’s concept of the most productive scale size (MPSS) is described in Section 3.3 followed by a discussion of scale efficiency in Section 3.4. The BCC model for measuring technical efficiency is presented in Section 3.5. Three alternative but equivalent approaches to identification of the nature of returns to scale that hold locally at a specific input-output bundle on the frontier are described in Section 3.6. Section 3.7 summarizes the main points in this Chapter.

3.2 Returns to Scale:
Consider, to start with, a single-output, single-input technology characterized by the production possibility set
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where 

            y = f(x)                                     (3.1a)

is the production function showing the maximum quantity of output y producible from input x and a is the minimum input scale below which the production function is not defined. When there is no minimum scale, a equals 0.


At some specific point (x, y) on this production function, the average productivity is
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Locally increasing returns to scale holds at this point if a small increase in x results in an increase in AP. Similarly, diminishing returns to scale exists when AP declines with an increase in x. Under constant returns, an increase in x leaves AP unchanged. Thus, 
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is positive under increasing returns, negative under diminishing returns, and 0 under constant returns. If the production function is differentiable,
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If average productivity reaches a maximum at a finite level of x, 
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 equals 0 at that point. This, of course, is only the first order condition for a maximum. But, if the production function is concave (so that f’’(x) < 0 over the entire range of x), the sufficient condition for a maximum is automatically satisfied.

Define 
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Then,


[image: image11.wmf])

1

(

)

(

2

-

=

e

x

x

f

dx

dAP

. (3.4a)

Hence,
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>1 implies increasing returns to scale,



[image: image13.wmf]e

=1 implies constant returns to scale, and
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<1 implies diminishing returns to scale.

Figure 3.1 shows the familiar S-shaped production function representing a single-output, single-input technology exhibiting variable returns to scale. In this case, average productivity increases as the input (x) rises from 0 to x0. This is the region of increasing returns to scale with 
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Beyond the input level x0, average productivity falls as x increases and diminishing returns to scale holds. Here 
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Locally constant returns to scale holds at x0, where 
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. This is also the input level where average productivity reaches a maximum. 

It may be noted that, in the example shown in Figure 3.1, over the region of increasing returns, the marginal productivity of x is increasing and the production function is convex. Convexity of the production function is not really necessary for the presence of increasing returns. Figure 3.2 shows a single-input, single-output production function with a positive minimum input scale. The production function is globally concave over its entire domain. But increasing returns to scale hold at input levels between xm and x0. At x0 there is locally constant returns and beyond this input level, diminishing returns holds. One critical difference between the two cases is that in Figure 3.1 (unlike in Figure 3.2) the production possibility set is not convex.

Consider an efficient input-output combination (x0, y0) satisfying 


y0 = f(x0).
(3.5)

Let x1 =( x0, and f(x1) = y1. Further, assume that y1 =
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y0 . Thus, 
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y0 = f(
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x0). Clearly, 
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For any efficient pair (x, y),


((()y = f((x).
(3.7)

Differentiating with respect to (,
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Further, at (=1,
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Thus, at (x, y),
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Consider, for example, the production function


f(x) = 2
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shown in Figure 3.3. For this function,
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For4 < x <16,
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>1 and AP increases with x signifying increasing returns to scale. At x=16,
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=1. Here AP reaches a maximum. Beyond this point, diminishing returns to scale sets in and 
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 < 1. The input level x* = 16 is of special significance. Because AP is the highest at this level of x, it corresponds to what Frisch (1965) called the technically optimal scale of production. The corresponding output level on the frontier is y*= 4. 


In the single-input, single-output case, productivity of a firm is easily measured by the ratio of its output and input quantities. When multiple inputs and/or multiple outputs are involved, one must first construct aggregate quantity indexes of outputs and inputs. Productivity can then be measured by the ratio of these quantity indexes of output and input. 

Returns to scale characteristics of the technology relate to how productivity changes in the special case involving multiple outputs and multiple inputs, where all the input bundles are proportional to one another and so are all output bundles. For expository advantage, we consider single output, 2-input production function. Let x0 = (x10, x20) and x1 = (x11, x21) be two different input bundles. Further, the input bundles are proportional. Thus, x1= tx0, t>0. Hence, x11= tx10 and x21= tx10. The maximum quantities of output producible from these input bundles are y0 = f(x0) and y1= f(x1).  In Figure 3.4, the input bundles x0 and x1 are shown by the points A0 and A1 on the isoquants for the output levels y0 and y1 respectively. Define the input bundle x0 = (x10, x20) as one unit of a single composite input (say, w). Now consider variations in the scale of this input without any change in the proportion of the constituent inputs. Thus, 2 units of the input w would correspond to the bundle (2x10,2x20). By this definition, the bundle x1= (tx10, tx20) represents t units of this composite input. Note that the ray from the origin through x0 (and also x1 in this case) itself becomes an axis along which we can measure variations in the scale of the constant-mix composite input w. 


In Figure 3.5, we modify the diagram shown in Figure 3.4  by introducing a third dimension to show changes in the quantity of the output y, which is assumed to be scalar. The input bundles x*0 and x*1 produce output quantities y0 and y1 respectively. The points P0 and P1 in the y-w plane show these input-output pairs. Both points are technically efficient. and lie on the production frontier y = f(w).


Figure 3.6 replicates the 2-dimensional (y-w) cross-section of the 3-dimensional diagram shown in Figure 3.5. We have effectively reduced the 1-output, 2-input case to a single-output, single-input case by considering only input bundles that differ in scale but not in the mix. In Figure 3.6, as in Figure 3.5, points P0 and P1 are efficient input-output pairs. The productivity index at P1 relative to the average productivity at P0 is the ratio of the slope of the line OP1 to the slope of the line OP0.  Note that these slopes measure average productivity per unit of the composite input w and are known as ray average productivities. By definition, the bundle x0 measure one unit of w and x1=t x0 corresponds to t units of this composite input. Hence, the productivity index is
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This is a ratio of ray average productivities in 3-dimensions but can be treated as the ratio of average productivities in 2-dimensions where the composite input is treated like a scalar.  Therefore, the foregoing discussion about returns to scale in the context of a single-input, single-output production function can be carried over to this single-output, single-(composite) input case also.

3.3 The Most Productive Scale Size (MPSS):
Starrett (1977) generalized the concept of returns to scale in the context of a multi-output, multi-input technology by focusing on expansion along a ray. Suppose that the input bundle
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is an efficient pair on the transformation function
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Hence, along the transformation function,
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Suppose that all inputs increase at the same proportionate rate 
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 and, as a result, all outputs increase at the rate 
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is a local measure of returns to scale. Starrett defines 
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as a measure of the degree of increasing returns. Locally increasing, constant, or diminishing returns hold when DIR exceeds, equals, or falls below 0. In a dual approach, Panzar and Willig (1977) use a multiple-output, multiple-input dual cost function to derive returns to scale properties of the technology from local scale economies.

Banker (1984) utilizes Frisch’s concept of technically optimal production scale to define the most productive scale size (MPSS) for the multiple-input, multiple-output case. With reference to some production possibility set T , a pair of input and output bundles (x0, y0)
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 In the case of a single-output, single-input technology characterized by T = {(x, y) : y 
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and x f’(x) = f(x) at the MPSS. Thus, CRS holds at the MPSS.


Banker defined the returns to scale measure as follows:
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Because (x0, y0) is an MPSS,
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Suppose that
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and
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Hence, (
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Thus, (
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 exists, the left hand and right hand limits coincide and (= 1 at the MPSS. Note that by L’Hospital’s rule, 
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’(1). Thus, Banker’s returns to scale classification coincides with the previous discussion if y=f(x) is a differentiable production function.

3.4 Scale Efficiency:

Consider the point (x*,y*) on the production function defined in (10) above. The tangent to the production function at this point is the line


g(x) = 
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which is a ray through the origin. Forsund (1997) refers to this as the technically optimal production scale (TOPS) ray. Because y = g(x) is a supporting hyperplane to the set


T = {(x, y): y 
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f(x)
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g(x) over the entire admissible range of x and f(x) = g(x) at x = 16. The set


G = {(x, y): y
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is the smallest convex cone containing the set T. At all points (x, y) on the TOPS ray, y = g(x) and 

if these points had been feasible, the average productivity at each of these points would have been


APTOPS = 
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But, as noted above, at the technically optimal scale, x*, g(x*) = f(x*). Hence, APTOPS  equals the maximum average productivity attained at any point on the production function y = f(x).

Consider, now, any point (x0, y0) on the frontier and compare it with the point (x*, y*) where AP attains a maximum. Both are technically efficient points. If either the input or the output quantity is prespecified, it is not possible to increase the average productivity beyond 
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. If the firm could alter both inputs and outputs, however, it could move to the point (x*, y*) thereby raising the average productivity to its maximum level. Thus, the scale efficiency of the input level (x0) or the output level (y0) is
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But, as noted before,
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at every input level x. Hence, scale efficiency can be measured as
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which is the ratio of  the output level on the production frontier and the output on the TOPS ray for the input level x. No presumption whatsoever exists that the point on the TOPS ray is a feasible input-output combination. It, nevertheless, serves as a benchmark for comparing the average productivity at a point on the production frontier, which is feasible, with the maximum average productivity attained at any point on the frontier.

3.5 Measuring Technical Efficiency Under Variable Returns to Scale:
As in Chapter 2, we hypothesize a production technology with the following properties:

       (i) the production possibility set is convex;

(ii) inputs are freely disposable; and

(iii) outputs are freely disposable.

Thus, if (x0, y0) and (x1, y1) are both feasible input-output bundles, then 
[image: image83.wmf])

,

(

-

-

y

x

is also a feasible bundle, where 
[image: image84.wmf]1

0

)

1

(

x

x

x

l

l

-

+

=

-

 and 
[image: image85.wmf].

1

0

;

)

1

(

1

0

£

£

-

+

=

-

l

l

l

y

y

y

 Further, if 
[image: image86.wmf]T

y

x

Î

)

,

(

then 
[image: image87.wmf]T

y

x

Î

)

,

'

(

, when 
[image: image88.wmf]x

x

³

'

, and
[image: image89.wmf]T

y

x

Î

)

'

,

(

, when 
[image: image90.wmf].

'

y

y

£

 When a sample of  input-output bundles 
[image: image91.wmf])

,

(

i

i

y

x

are observed for N firms (i= 1,2,..,N), we assume, further, that

(iv) 
[image: image92.wmf]T

y

x

i

i

Î

)

,

(

for i = 1,2,…,N.
Note that an infinitely of production possibility sets exists with properties (i)-(iv). In any practical application, we select the smallest of these sets
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Here the superscript V identifies variable returns to scale. Varian (1984) calls it the inner approximation to the underlying technology set.


Construction of a production possibility set from observed data is illustrated for the one-output, one-input case in Figure 3.7. The actual input output bundle (xi, yi) is given by the point Pi for 5 firms. The area P1P2P3P4 is the convex-hull of the points P1 through P5. By the convexity assumption, all points in this region represent feasible input-output combinations. Further, by free disposability of inputs, all points to the right of this area are also feasible. Finally, by free disposability of outputs, all points below these enlarged set of points (above the horizontal axis) are also feasible. The broken line P0P1P2P3-extension is the frontier of the production possibility set S in this example. This set is known as the free-disposal convex-hull of the observed bundles.

We can use the benchmark technology set S to measure the technical efficiency of the observation P5. The input-oriented projection of P5 is the point A corresponding to the minimum input level
[image: image94.wmf])

*

5

(x

necessary to produce the output level y5. Thus, the input-oriented technical efficiency of P5  is PRIVATE 



[image: image95.wmf].

 

x

x

 

=

 

)

y

(x

 

TE

V

I

5

*

5

5

5

,


(3.28)

Similarly, the output-oriented projection is the point B showing the maximum output 
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As already noted in Chapter 2, the input- and output-oriented technical efficiency measures will, in general, differ when variable returns to scale (VRS) hold. Note that average productivity of the input varies along the frontier of the production possibility set in this case. It initially increase reaching a maximum at P2 and declines with further increase in x.

The input-oriented measure of technical efficiency of any firm t under VRS, requires the solution of the following LP problem due to Banker, Charnes, and Cooper (BCC):
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Let 
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The output-oriented measure of technical efficiency is obtained from the solution of the following program:
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Again, define 
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All convex combinations of the observed input-output bundles are feasible by assumption.  Thus, the input –output bundle 
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s. In other words, we return to the CCR-DEA for the CRS technology merely by deleting the restriction 
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 Then, under CRS, the sum of the output bundles of DMUs r and s are producible from the sum of the corresponding input bundles. That is, under CRS, the technology is additive. The following example illustrates these points.

Example3.1:  Data for input (x) and output (y) are reported below for 5 firms A, B, C, D, and E:

                    Firm:       A        B      C      D      E 

                input (x)      2        4       6       7      5.5

              output (y)      2        6       8       4      6.5

Under the assumption of VRS, the production frontier is the broken line KABC-extension shown in Figure 3.8. But, if CRS is assumed, the production frontier is the ray OR passing through the point B which is the MPSS on the VRS frontier. Both A and C are technically efficient under the VRS assumption but not under CRS. Firm B is efficient even when CRS is assumed. D and E are both inefficient even under VRS. Consider firm E. Its input-oriented projection onto the VRS frontier is F, where xE*(=4.5) units of the input   produce yE (= 6.5) units of  the output. The output-oriented projection, on the other hand, is the point G,  where yE* (= 7.5) units of the output are produced from xE (=5.5) units of the input. Therefore, the input- and output-oriented efficiency levels of firm E under VRS are
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On the other hand, the input-oriented projections onto the CRS frontier  is the point H, where only x1C (= 
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) units of the input produce the same output. Hence,  CRS technical efficiency is


TEC(E)=
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The output-oriented projection of E is the point I on the CRS frontier. But comparison of the points E and I yield the same measure of technical efficiency as what is obtained by comparing  points E and H. 

Firm C, using 
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 units of the output is located on the VRS frontier. Hence, its technical efficiency (both input- and output-oriented) is 1 under VRS. Its output-oriented projection onto the radial CRS frontier is the point C* where xC (=6) units of the input is shown to produce yC* (=9) units of the output. Thus, the CRS technical efficiency of this firm is
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Note that scale efficiency of firm C is the ratio of average productivity at the point C which is efficient to the maximum average productivity which is attained on the frontier at B. The average productivity at B is the same as the average productivity at C* (which is not really a feasible point). But a comparison the the average productivities at C and at C* is equivalent to comparing the technical efficiency of the point C to the VRS frontier and a hypothetical CRS frontier shown by the ray through B. The scale efficiency of firm C can thus be measured as
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The question of scale efficiency is relevant only when CRS does not hold. Therefore, the ray OR does not represent a set of feasible points. The only  feasible point on OR is B, because it lies on the VRS frontier. However, because average productivity is constant for all input-output bundles (feasible or not) on the ray OR, we use the point C* (even though it is not feasible) to measure the average productivity at the point B, which is a feasible point. Thus, the scale efficiency of the point C is simply the ratio of average productivities at C and at B.


For a point that lies on the VRS frontier, input- and output-oriented scale efficiencies are identical, unlike inefficient points such as E. This is because the input- and output-oriented projections of an inefficient point are two different points on the VRS frontier. Generally, the average productivities at these two points are different. As a result, the input- and output-oriented scale efficiency measures are also different. For firm E , the two measures are
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,  respectively.

Example 3.2a. Reconsider the input-output bundles from Example2.1. For the input-oriented technical efficiency of firm C , we solve the following LP problem:
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The optimal solution for this problem is
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For the input-oriented measure, the reference firm for C is a weighted average of firms A, B, and F. This reference firm requires 3.29725 units of 
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 and 3.8468 units of
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Thus, both inputs can be reduced by a factor of 0.54955. At the same time, output 
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would increase by 0.55 units while 
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would remain unchanged. The input-oriented technical efficiency is 0.54955. In Chapter 2, the technical efficiency of firm C under CRS was found to be 0.529. Imposition of the additional constraint  (
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) has resulted in a higher value of the objective function in this minimization problem for measuring input-oriented technical efficiency.

Example 3.2b.  The output-oriented technical efficiency of DMU C is obtained by solving the LP problem:PRIVATE 
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The optimal solution for this problem is 
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 Thus, the firm F is the reference firm for C. If C's input bundle was utilized by this reference firm, output 
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would increase from 6 to 11 (an increase by a factor of 1.8333) while output 
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would increase from 3 to 8 (by a factor of 2.6666). Further, the quantity of input 
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would be reduced by 1 unit while input
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used would remain unchanged. Thus,
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 There is an output slack of 2.5 units in 
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 The output-oriented technical efficiency of DMU C under VRS is
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Note that this measure differs from the input-oriented efficiency under VRS. 

The input-oriented scale efficiency of firm C is
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while the output-oriented scale efficiency is
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In Example 3.1 above, we could have directly computed the average productivities at the input- and output-oriented projections and compared them with the average productivity at the MPSS. In that context, measuring the technical efficiency relative to an inappropriate CRS frontier appeared to be an unnecessary exercise. In multiple-input, multiple-output cases (like Examples 3.2a-3.2b), average productivity as a ratio of output to input does not have a meaning. We need to compare ray average productivities. The ratio of technical efficiencies under CRS and VRS, respectively, measures the ray average productivity at the efficient projection of an observed input-output bundle onto the VRS frontier relative to the maximum ray average productivity attainable at an MPSS on this frontier.

3.6 Identifying the Nature of Returns to Scale at any Point on the Frontier:

Scale Efficiency falls below unity at any point on the VRS frontier that is not an MPSS. This is true under both increasing and diminishing returns to scale. Thus, scale efficiency by itself does not reveal anything about the nature of returns to scale. Three alternative approaches to address this problem are available in the literature.

A Primal Approach:


Banker (1984) establishes the relation between an MPSS of a VRS production possibility set and the optimal solution of the CCR DEA problem in the following theorem

Theorem 1: An input-output bundle 
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is an MPSS if and only if the optimal value of the objective function of a CCR-DEA model equals unity for this input-output combination.

Proof: Consider the data set 
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Suppose that the optimal solution for this problem is 
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. Note that the optimal solution for this CRS problem may not be feasible for the VRS technology, however. We need to show that 
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Let 
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Thus, 
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An implication of this theorem is that the CRS and VRS frontiers coincide at an MPSS.

Three important corollaries of this theorem are:

Corollary 1: Firm 
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Corollary 2: Firm 
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 Corollary 3: Firm 
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The intuition behind Corollaries 1-3 is easily explained by means of a simple diagram in Figure 3.9 for the single-output, single-input case. Points A, B, C, D, and E show the input-output bundles of five firms in a sample. The VRS frontier is shown by the broken line segment FABC-extension. The CRS frontier on the other hand is the ray OBR through the origin. Consider point D where the firm uses input x4 to produce output y4. The input-oriented projection of D onto the CRS frontier is the point G where input (*x4 is used to produce output y4. Note that point G is not feasible under the VRS assumption. However, the point B on the CRS frontier is feasible under the VRS assumption also. This corresponds to the MPSS. This corresponds to the input-output bundle 
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the CRS projection has to be scaled down to attain the MPSS. In this example, the point G lies to the right of B on the CRS frontier and the efficient projection of the firm observed at point D onto the VRS frontier is the point H that lies in the region of diminishing returns to scale. Similarly, the efficient input-oriented projection of the point E onto the CRS frontier is point J. One must scale this up (i.e., k* < 1) in order to reach the MPSS at point B. The efficient projection of E onto the VRS frontier is the point K that lies in the region of increasing returns to scale.


One practical problem with this criterion is that there may exist alternative optimal solutions for the CCR-DEA problem where 
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exceeds 1 in some optimal solution but falls short of 1 in another optimal solution for the same problem. Because the solution algorithm terminates whenever an optimal solution is reached, the decision about returns to scale then becomes dependent on which particular optimal solution was reached. We need to qualify the above corollaries as follows:

Corollary 2A: Firm 
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Corollary 3A: Firm 
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In order to implement this revised criterion in practice, we need the following 2-step procedure:

Step 1: Solve the CCR-DEA and obtain 
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Step 2: Solve the following problem:
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Note that only the 
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s from the optimal solutions of the Step 1 problem are feasible for the Step 2 problem. Hence, if the optimal value of the Step 2 problem is less than 1, we know that 
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at all optimal solutions of the CCR-BCC problem and therefore locally increasing returns hold. To test for diminishing returns, we simply minimize (rather than maximize) the objective function in the Step 2 problem. This time if the minimum exceeds 1, locally diminishing returns are implied.

A Dual Approach:


Banker, Charnes, and Cooper (BCC) (1984) offer a different approach to identifying returns to scale at a point on the VRS frontier, which differs in two important respects from the above. First, they focus on the BCC-DEA problem that explicitly assumes variable returns to scale. Second, they focus on the dual (rather than the primal) formulation of the problem.


For the VRS input-oriented problem evaluating DMU t with input-output 
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This is equivalent to
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Consider the optimal solution 
[image: image215.wmf].
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is a separating hyperplane for the VRS technology set T. Thus, 
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For each observation j,
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Hence,
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But, if
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and it is a supporting (or tangent) hyperplane at
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Consider the point
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is arbitrarily small in absolute value. Then locally increasing returns holds at 
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That is a small radial increase in scale remains a feasible input-output bundle, but a small radial decrease is not feasible.


CRS holds if 
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In this case, a small radial change - either increase or decrease in scale - leaves the resulting input-output bundle feasible.


Locally diminishing returns to scale hold if
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Here, a small reduction in scale leaves the input-output bundle feasible, but a small increase in scale will not be feasible.


Note that because 
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Further, when 
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Hence, in the case of locally increasing returns, the tangent hyperplane has a negative intercept. Similarly, if 
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 Thus a positive intercept represents locally diminishing returns. Finally, if 
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 Thus, in the case of CRS, the tangent hyperplane is a ray through the origin. This compares directly to the simple one-input, one-output case, where the tangent to the production function at an MPSS is a ray through the origin. This is illustrated in Figure 3.10. The VRS frontier is shown by the broken line KABC-extension. Point A lies in the region of increasing returns to scale on the VRS frontier. The tangent hyperplane through A  (the line R1R1) meets the vertical axis below the origin with a negative intercept. Point B is an MPSS where locally constant returns to scale hold. The tangent hyperplane through B is the ray OR through the origin. Point C in the region of diminishing returns. The tangent through C (R2R2) has a positive intercept and meets the vertical axis above the origin.


Like Banker’s primal approach, this dual approach also contains the potential problem of multiple optimal solutions. The following 2-step procedure can be adopted in this case:

Step 1: Solve the dual maximization problem for the BCC-DEA model. Suppose that the optimal value of the objective function is W*.

Step 2: Now solve the problem

                              max  
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If the optimal value of the objective function is less than 0, we conclude that u0 is negative in all of the optimal solutions for the problem in Step 1. Hence, increasing returns holds at this input-output bundle. To test for diminishing returns, we minimize u0 in Step 2. If the minimum value exceeds zero, diminishing returns to scale is implied.

A Nesting Approach:


Färe, Grosskopf, and Lovell (1985) exploit the hierarchical relation between the production possibility sets under alternative assumptions about returns to scale.


Under variable returns to scale, which allows increasing, constant, or diminishing returns at different points on the frontier, we assume only that convex combinations of actually observed input-output bundles are feasible. Thus, as a first approximation, we treat the convex hull of the observed points as the production possibility set. Further, by free disposability of inputs and outputs, all points in the free disposal convex hull of these points are also considered feasible. Under constant returns to scale, all scalar expansion as well as non-negative radial contractions of feasible input-output bundles are also considered feasible. In that case, the smallest cone containing the free disposal convex hull of the observed bundles, often called the conical hull, constitutes the production possibility set. In between the assumptions of variable and constant returns scale lies non-increasing returns to scale (NIRS). When the technology exhibits non-increasing returns to scale, all scalar contractions of observed input-output bundles are feasible; but scalar expansions of bundles that are feasible under the VRS assumption are not necessarily feasible. The VRS production possibility set is contained in the NIRS production possibility set, which is itself a subset of the CRS production possibility set. 

The three different sets are shown in Figure 3.11. Points A, B, C, D, E, and F show the observed input-output combinations of a number of firms. As explained earlier, the broken line LABC-extension is the frontier of the production possibility set (TV) under VRS. Note that points to the left of LAB are not considered feasible under VRS. If NIRS holds, however, whenever (x, y)
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 This means that whenever any input-output bundle that is feasible under VRS is scaled down, the resulting bundle would be feasible when NIRS holds. The frontier of the production possibility set under NIRS, TN, is OBC-extension. Finally, when CRS holds, the production frontier is the ray OR passing through the point B, which is an MPSS on the VRS frontier. Note that the NIRS and the CRS frontier coincide over the range where increasing returns hold along the VRS frontier. On the other hand, the NIRS and VRS frontiers coincide when diminishing returns to scale holds under VRS. At the MPSS (on the VRS frontier), all the three frontiers coincide. This extremely useful relation between these frontiers can be utilized to identify the returns to scale characteristics of the technology at any given point.

Consider point F, which is an interior point of TV and is technically inefficient. The input oriented efficient projection of F onto the VRS frontier is G and onto the CRS frontier is H. This is also the projection onto the NIRS frontier. Thus, the input-oriented technical efficiency of F is


TEIV(F)=
[image: image267.wmf]JF

JG

, if VRS is assumed and

            TEIC(F)=TEIN(F)=
[image: image268.wmf]JF

JH

, if either CRS or NIRS is assumed.

Note that the point G, the input-oriented projection of F, lies on the increasing returns region of the VRS frontier. Therefore, if TEIC = TEIN < TEIV, the input-oriented projection onto the VRS frontier is in the increasing returns to scale region.


Next, consider the point E. Its input-oriented projection onto the VRS frontier (which is the same as the projection on the NIRS frontier) is point K, but its projection onto the CRS frontier is N. For this firm, the input-oriented technical efficiency is


TEIV(E) = TEIN(E) = 
[image: image269.wmf]ME

MK

, under either VRS or NIRS and


TEIC(E) = 
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MN

under CRS.

The input-oriented projection is a point on the region of diminishing returns in the VRS frontier. Thus, when

TEIV = TEIN > TEIC, diminishing returns hold at the input-oriented projection.


 Note two things. First, the assumed technology exhibits variable returns to scale. Thus, points outside the VRS frontier are artificial reference points that are not feasible. Second, for some points (e.g. D), the input-oriented projection is in the increasing returns region while the output-oriented projection is in the region of diminishing returns on the VRS frontier. For such observations, returns to scale characterization depends on the orientation.


In order to implement this procedure in practice, we need to measure the input- or output-oriented technical efficiency levels using an NIRS frontier as the benchmark. Because every radial contraction of any input-output bundle that is feasible under VRS is feasible under NIRS,


TN = {(x, y): x 
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Note that under CRS, no restriction is imposed on the sum of the 
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s. Under VRS, the sum equals unity. Under NIRS, the sum is less than or equal to unity. Thus, the VRS technology set is the most restrictive (the smallest) and the CRS technology set is the least restrictive (largest) while the NIRS technology set lies in between.


The following theorem due to Banker, Chang, and Cooper (1996) shows that the alternative approaches to returns to scale determination are equivalent and will always yield mutually consistent results.

Theorem 2:  

(a) There exists a solution for the CCR problem (3.36) with 
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(b) All alternative optimal solutions of the CCR problem have  
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TE C < TEN = TEV (i.e., DRS holds).

( c)  All optimal solutions of the CCR problem have 
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 Proof of the Theorem:

Part (a): We know from Theorem 1 and Corollary 1(a) that in the case of CRS, TEC=1 and 
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. Thus, this particular solution is also feasible for the BCC problem resulting in TEV= 1 and SE =1. Conversely, if   SE = 1, TEV= TEC. Thus, an optimal solution for the BCC problem is also an optimal solution for the CCR problem. But because it is a solution for the BCC problem, it must satisfy 
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For parts (b) and (c) we make use of the following lemma.

Lemma: If the CCR problem has two alternative optimal solutions one with 
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Proof of lemma:

Suppose that the first solution  is 
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We now return to the proof of parts (b) and (c) of the theorem. Consider part (c) first. If  
[image: image289.wmf]å

<

j

j

1

*

l

at

all optimal solutions of the CCR problem,  then, by virtue of part (a) of this theorem, SE < 1 and TEC<TEV. But in this case, these optimal solutions of the CCR problem are all feasible for the NIRS problem. Therefore, TEN < TEV.  On the other hand, when TEN < TEV, an optimal solution for the NIRS problem is not feasible for the BCC problem. Thus for all optimal solutions of the NIRS problem, 
[image: image290.wmf]å

<

j

j

1

*

l

.  These are, of course, all feasible solutions for the less restrictive CCR problem. But because SE <1, an optimal solution of the CCR problem with 
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Next consider part (b). If  
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be a solution for the NIRS problem. Define , as in the lemma, 
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This, clearly, is a contradiction. In this case, it is not possible to have 
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The converse implications for parts (b) and (c) follow immediately because the conditions specified in the theorem are mutually exclusive.

Example 3.3a. The input-oriented technical efficiency of DMU C (from Example 2b) under NIRS is obtained by solving the problem
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Compared to the problem in Example 3.2a, here the restriction on the sum of the 
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s is changed from equality to a “less-than-equal-to” sign.


The SAS program for this problem is given below:


DATA EX3A;


INPUT A B C D E F  THETA  _TYPE_  $   _RHS_ ;


CARDS;


4   9   6   8   7  11   0 
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  6


2   4   3  6    5    8   0 
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  3

             2   7    6  5    8   6  -6 
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   0

             3   5    7  8    4   6  -7  
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   0

             1   1    1  1    1   1    0  
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  1

             0   0    0  0    0   0     1  MIN  .


;


PROC LP; 

Note that in the first two constraints the output quantities of DMU C appear in the right-hand side of the inequality sign and that the input quantities of C appear with a negative sign in the column for THETA. Further, the restriction on the 
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s is a less-than-equal-to type for this NIRS problem. The optimal solution for this problem is:
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Thus,  TEIN ( C) = 0.529. This  is also the solution for the CRS model when there is no restriction on the sum of  the 
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s. Therefore, for DMU C, the input-oriented technical efficiency level is higher than the measure obtained under NIRS, which is the same as what we get under the CRS assumption. Hence, we conclude that the input-oriented projection of C falls in the region of  increasing returns to scale.


To apply the 2-step procedure based on Banker’s primal approach, we first scale down the actual input bundle of  C by the factor 
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(0.529) obtained from the CRS version of the input-oriented DEA model. The resulting values are 3.1765 for input 
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 and 3.7059 for input 
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. The LP problem to be solved in the second step is:


max  
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The optimal value of the objective function was 0.8824. This implies that the sum of the 
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s is less than unity at all optimal solutions of the CCR-DEA problem in Step 1. This confirms that the input-oriented projection of firm C is in the increasing returns to scale region of the VRS frontier.

Example 3.4.  We now measure the scale efficiency and the nature of returns to scale of firm 6 from the Korean electric utility data set considered earlier in Example2.2 in Chapter 2. Exhibit 3.1 shows the relevant LP problem. Note that there is an additional row called LAMBDA with 1 on the right hand side for the restriction 
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Exhibit 3.2 shows the optimal solution of the problem.  The value of the objective function under VRS is 1.27137which is lower than the optimal value 1.30187 reported for CRS in Exhibit 2B in chapter 2. Hence, the scale efficiency of firm 6 is
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This, it should be noted, is a measure of output-oriented scale efficiency. The input-oriented VRS technical efficiency of the firm 6 would be different leading to a different measure of the scale efficiency of the firm.

Finally, in order to determine the nature of returns to scale, we solve the DEA problem under the NIRS assumption. This requires changing the equality restriction in the LAMBDA row to a "less-than-or-equal-to" inequality. The value of the objective function for the NIRS problem is 1.30187, which coincides with the optimal value under the CRS assumption. Thus, for firm5, TEC=TEN<TEV. This implies that the firm is operating in a region of increasing returns to scale.


It would be instructive to verify that the various alternative approaches described above all lead to the same conclusion about the nature of returns to scale for firm #6. This is left as an exercise for the reader.

3.7 Summary:


When the technology allows variable returns to scale at different points on the frontier of the production possibility set, the technical efficiency (either input- or output-oriented) of a firm will differ from its scale efficiency. Technical efficiency is measured by comparing the (ray) average productivity of a  firm with the corresponding average productivity at its input- or output-oriented projection onto the VRS frontier. Scale efficiency, on the other hand, compares the average productivity at the efficient input- or output-oriented projection with the maximum average productivity attained at the MPSS on the VRS frontier. One can ascertain the returns to scale properties at any point on the frontier by looking at the optimal solution of the CCR-DEA problem either in its primal or  dual formulation. A third alternative is to compare the technical efficiency levels of a firm measured with reference to a VRS, an NIRS, and a CRS frontier. When the NIRS and CRS measures are equal to one another but differ from the VRS measure, increasing returns to scale holds at the corresponding efficient projection on the VRS frontier. On the other hand, if the VRS and NIRS measures are equal but differ from the CRS measure, diminishing returns to scale holds at the relevant point on the frontier. The three measures coincide only at an MPSS.


Note that in this discussion of scale efficiency, variable returns to scale is the maintained assumption. The CRS and NIRS frontiers are mere artifacts that permit us to examine different points on the VRS frontier. Further, that input- or output slacks are not included in the technical efficiency measures. We will return to slacks and non-radial efficiency measures in a later chapter.

Guide to the Literature:
 Farrell and Fieldhouse  (1962) recognized the restrictive nature of the CRS assumption underlying the Farrell measure of technical efficiency and proposed an appropriate transformation of the data that would allow non-constant returns to scale within an activity analysis framework. Forsund and Hajlmarsson (1979) proposed a generalization of the Farrell efficiency measure separating scale efficiency from the pure technical efficiency using a parametric production function. Banker (1984) generalized the concept of the technically optimal production scale introduced by Frisch (1965) to the multiple output multiple input case. Banker, Charnes, and Cooper (1984) developed the DEA model for variable returns to scale technologies. Although the BCC model has become the standard analytical format in the DEA literature, it may be noted that Byrnes, Färe, and Grosskopf (1984) independently developed a nonparametric model allowing scale inefficiency. Banker and Thrall (1992) derive a number of important results relating to the most productive scale size. For two excellent surveys of the nonparametric methodology see Lovell (1993, 1994).


In the parametric literature, the primary interest has been on scale elasticity rather than on scale efficiency. Ray (1998) extends the earlier approach of Forsund and Hjalmarsson (1979) to measure scale efficiency from the more flexible Translog production function.

                                         Exhibit 3.1 DEA-LP Problem for Firm  #6 under VRS

    Firm      # 1     # 2     # 3     # 4     # 5     # 6     # 7     # 8

 capital   706.698 1284.90 1027.92 1027.92 1027.92 1027.92 2055.85 2055.85

   labor  643.389 1142.20 1749.44 1019.30 1033.76  527.72 1048.22  1055.45

    fuel   648.946 1101.65  531.19  640.32  640.41  448.10 2136.09 2140.03

  output   614.660 1128.39  533.52  611.80  619.68  404.99 2276.89 2278.26

  lambda      1.000    1.00    1.00    1.00    1.00    1.00    1.00    1.00

 objective    0.000    0.00    0.00    0.00    0.00    0.00    0.00    0.00

        # 9    # 10    # 11   # 12     # 13    # 14    # 15    # 16    # 17

    2055.85  51.396  51.396 51.3962  51.396 1669.35 308.377 308.377  256.98

    1062.68  86.749 101.207 93.9782 101.207 1612.09 910.865 903.636 1178.34

    2140.18 111.276  91.632 91.9232  92.244 1585.23 344.508 344.483  273.29

    2172.23  71.720  73.405 73.8759  73.834 1548.44 260.830 258.852  181.65

       1.00   1.000   1.000  1.0000   1.000    1.00   1.000   1.000    1.00

       0.00   0.000   0.000  0.0000   0.000    0.00   0.000   0.000    0.00

       # 18    # 19    # 20    # 21    # 22    # 23    # 24    # 25    # 26

     256.98 1027.92 642.452 1027.92 1027.92  385.47 865.640 906.033  256.98

    1185.57 1366.30 751.825  838.57  824.12 1655.46 809.658 780.742 1069.91

     273.28 1185.60 699.303 1090.23 1090.26  362.30 559.963 554.623  221.73

     179.92 1076.19 586.162  959.15  958.38  278.13 660.532 673.120  246.69

       1.00    1.00   1.000    1.00    1.00    1.00   1.000   1.000    1.00

       0.00    0.00   0.000    0.00    0.00    0.00   0.000   0.000    0.00

       # 27      # 28      # 29      # 30        phi   _type_     _rhs_

     256.98   2878.19   2878.19   2569.81      0.000    <=      1027.92

    1033.76   1828.96   1821.73   1763.90      0.000    <=       527.72

     228.01   3509.60   3510.85   3352.76      0.000    <=       448.10

     252.86   3708.16   3709.64   3528.04   -404.985    >=         0.00

       1.00      1.00      1.00      1.00      0.000    =          1.00

       0.00      0.00      0.00      0.00      1.000    max         .

 Exhibit 3.2 Optimal Solution of the Output-oriented VRS DEA-LP for Firm #6

                             Solution Summary

             Objective Value                     1.2713697539

                             Variable Summary

              Variable                                      Reduced

           #  Name     Status Type        Price  Activity      Cost

            1  # 1            NON-NEG         0         0 -0.299656

            2  # 2            NON-NEG         0         0 -0.387513

            3  # 3            NON-NEG         0         0 -0.799197

            4  # 4            NON-NEG         0         0  -0.48423

            5  # 5            NON-NEG         0         0   -0.4726

            6  # 6            NON-NEG         0         0  -0.27137

            7  # 7     BASIC  NON-NEG         0 0.0456371         0

            8  # 8            NON-NEG         0         0 -0.009969

            9  # 9            NON-NEG         0         0 -0.275938

           10  # 10           NON-NEG         0         0 -0.048242

           11  # 11           NON-NEG         0         0 -0.004273

           12  # 12    BASIC  NON-NEG         0 0.3861955         0

           13  # 13           NON-NEG         0         0 -0.004692

           14  # 14           NON-NEG         0         0 -0.765965

           15  # 15           NON-NEG         0         0   -0.5793

           16  # 16           NON-NEG         0         0 -0.580308

           17  # 17           NON-NEG         0         0  -0.74394

           18  # 18           NON-NEG         0         0 -0.752029

           19  # 19           NON-NEG         0         0 -0.837354

           20  # 20           NON-NEG         0         0 -0.548838

           21  # 21           NON-NEG         0         0 -0.617631

           22  # 22           NON-NEG         0         0 -0.611977

           23  # 23           NON-NEG         0         0 -0.972394

           24  # 24           NON-NEG         0         0 -0.059233

           25  # 25    BASIC  NON-NEG         0 0.5681674         0

           26  # 26           NON-NEG         0         0 -0.401641

           27  # 27           NON-NEG         0         0  -0.38249

           28  # 28           NON-NEG         0         0 -0.194577

           29  # 29           NON-NEG         0         0 -0.190119

           30  # 30           NON-NEG         0         0 -0.226257

           31 phi      BASIC  NON-NEG         1 1.2713698         0

           32 _OBS1_   BASIC  SLACK           0 399.47369         0

           33 _OBS2_          SLACK           0         0 -0.000528

           34 _OBS3_          SLACK           0         0 -0.002415

           35 _OBS4_          SURPLUS         0         0 -0.002469

                            Constraint Summary

             Constraint            S/S                          Dual

         Row Name       Type        #        Rhs  Activity  Activity

           1 _OBS1_     LE          32 1027.9237 628.45001         0

           2 _OBS2_     LE          33 527.72356 527.72356 0.0005276

           3 _OBS3_     LE          34 448.10376 448.10376 0.0024148

           4 _OBS4_     GE          35         0         0 -0.002469

           5 _OBS5_     EQ           .         1         1 -0.089144

           6 _OBS6_     OBJECTVE     .         0 1.2713698         .    
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