Thiele (1872) modeled mortality at all ages by 
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Multi exponential Model Rogers & Plack (1983) IIASA Luxemberg
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are estimated for a succession of years. We thus get 
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 is now forecast via ARIMA models.

Growth Curves:

Gompertz Curve: 
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Logistic Curve:
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Non-Linear Time Series Models:
Non-Linear Autoregressive Model (NLAR):
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is an NLAR model. The most common model is NLAR(1)
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Self-Excited Threshold Autoregressive Model (SETAR):
SETAR (L; k) with delay parameter d
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Where,
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 are coefficients which change with j. Which coefficients apply depends on a specific past value of Y(t) itself say Y(t-d). The possible values that Y(t-d) can assume are divided into ‘L’ regimes say R1,R2,…,RL and if Y(t-d)  falls in Rk we take j=k. Thus an example

SETAR(2;1)

Y(t) =  1.0 + 0.6 Y(t-1) + ((t) 


if Y(t-1)≦0

Y(t) = -1.0 + 0.4Y(t-1)  + ((t)


if Y(t-1) >0

e.g. inflation rises very rapidly once it crosses a threshold say 15%


P(t) = 1.3P(t-1) + ((t)


if P(t-1) > 15%


P(t) = P(t-1) + ((t)


if P(t-1)  between 4-15%


P(t) = 0.7P(t-1) + ((t)


if P(t-1) < 4%

Smooth Threshold Autoregressive (STAR) Model:
One disadvantage of the SETAR model is that the model switchover is abrupt. This may be an undesirable feature in practice. Suppose we have SETAR (2;1) model with delay parameter 2.
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if X(t-2) ≤ r
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if X(t-2) > r

This can be written as 
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Where Ir(x) = 0 



if x ≤ r



       = 1



if x > r

A STAR is obtained by replacing Ir(x) by Фr (x) say where 
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When x is substantially smaller than ‘r’, Фr(x) is quite small, so that in the model for Y(t) the coefficients  
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 gets a small weight while if x is greater than ‘r’,  Фr(x) is relatively large and the reverse happens.

 As x ( ( , Фr(x)(1 and we switchover completely to model(2) with a complete  switchover to model(1) as x ( -(.

Random Coefficient Autoregressive Models (RCA):
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Where βi are constant and B(t)=[B1(t), B2(t),…, Bk(t)] is a sequence of random vectors.

Newer Exponential Autoregressive (NEAR) Models:
Let J(t) be a discrete random variable with the following p.d.f.

 

0

with probability α0
J(t) =

1

with probability α1


k

with probability αk

NEAR(k) model defined as 
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State Dependent Models (SDMs):
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Testing for Non-Linearity:

Mcleod & Li (1983) Test:
Let X1, X2, …, XN be a given time series to which we fit an appropriate ARMA model.

Let 
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Where 
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Ljung-Box statistic 
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Keenan’s Test: Keenan (1985)

1.
Regress Xt on {1, Xt-1, …, Xt-M} M being sufficiently large and let 
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2.
Regress 
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 on {1, Xt-1,…,Xt-M}and let 
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3.
Let 

P=
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and run the regression P=η0 Q + u

Define
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4.Let 
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Amplitude Dependent Exponential Autoregressive (EXPAR) Model:
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Hamilton’s Markov Switching Regime Model:
A simple example of this model is given by 
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Where ‘St’ is Markov State variable with

P{St=1 | St-1=1}= p



P{St=0 | St-1=1}= 1-p

P{St=0 | St-1=0}= q



P{St=0 | St-1=0}= 1-q

Suppose state ‘0’ is a recession and state ‘1’ is boom, then the problem of staying in a recession (boom) is q (p).

Example:
Using such a model, Franses & Paap (Journal of Macroeconomics) develop the following estimates for German employment in the 1990s. 

Recession:
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Expansion:
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Bilinear Model: 

The bilinear model is a simple extension of the ARIMA model:
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Bilinear models are particularly appropriate for series with bunched outliers, for during these periods there is a regime shift. When the normal regime operates, the bilinear part of the model is mostly inoperative ; it only becomes operative when a typical behaviour sets in, and then it acts so as to smooth outliers.

Non-Linear Dynamics & Chaos:

It has been found in the natural sciences that  completely deterministic processes can generate behaviour which appears random under standard statistical tests. In the simple model considered by Brock (1986)
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Most trajectories of the above difference-equation generate the same ACFs as an AR(1) process for x(t) with parameter ( ( (2a-1). In particular for a=0.5, the trajectory will be indistinguishable from white noise, even though it has been generated by a   completely deterministic non-linear process. 

The usefulness of such models in economics is illustrated by Baumol & Benhabib (1989). 

A Non-Linear Model of US GNP (Potter JAE vol. 10, 1995):
SETAR (1, d, r) Model: 
d=2, 
r=0
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or,


[image: image62.wmf])

4

,...,

1

(

}

{

1

=

+

+

=

-

j

Y

Y

t

j

t

j

j

t

e

f

f

a


Where we have 4 regimes.
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a worsening recession 
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an improving recession
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an expansion with increasing growth
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