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Preface for a revised lecture...

Here you have a revised version of my 5th January 
presentation. It is just the 1.2 version... I’m sure I 
can improve it: any comments are very welcome 
I’ll be working at IGIDR, (and living in India) 
God willing, till September 2005.
You can reach me at jjgarvel@um.es, now and 
beyond September 2005: it is my former university 
e-mail address
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State of Murcia (Spain)

Surface:
– 11.314 km2

Coast:
– 274km

Temperature:
– 19º C average
– 3000 sun hours/year

Population:
– State of Murcia:

• 1.250.000 (2002)
– City of Murcia

• 350.000 (3.5lacks)
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Murcia (Spain)
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Murcia (Spain)
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Summary

Part I: Introduction
– Spectral analysis: the frequency domain
– Tools in the frequency domain

• the fast fourier transformation
• the periodogram
• the filters

– Drawbacks of the frequency domain

Part II: The wavelets
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Summary

Part I: Introduction
Part II: The wavelets
– Some applications...
– Basic Elements of the wavelets world

• the mother wavelet
• the scale/frequency concept

– The continuos wavelet transformation
• some applications

– The filters revisited: the DWT
• some aplication 8

Spectral analysis: 
the frequency domain

The spectral analysis gives us a way of 
studying stationary time series which 
complements those used in time 
domains
The spectral representation is rooted in 
the basic notion of Fourier Analysis 
J.B. Fourier (1768-1830)
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A typical example: Wolfer’s
Sunspot data: 1700-1987

Wolfer's Sunspot numbers 1749-1924
SOURCE: Anderson (1971) T.W. The 
Statistical Analysis of Times Series
John Wiley and Sons: New York
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Fourier Analysis, I

Functions can be approximated over a 
finite interval, to any degree of 
accuracy, by a weighted 
combinations of sine and cosine 
functions, whose harmonically rising 
frequences are integral multiples of a 
fundamental frequency
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Fourier Analysis, II

The periodogram is simply a device 
for determining how much of the 
variance of f(t) is attributable to any 
given harmonic component

Its value at ωn 
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Fourier Analysis, III

In 1965, Cooley and Tuckey published 
an algorithm known as the Fast 
Fourier Transformation (FFT) that 
produces the same coefficients but with 
fewer arithmetic operations
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Fourier Analysis, IV

The relationship between the spectral 
density function and the sequence of 
autocovariances, (Norbert Wiener- A. 
Khintchine theorem, 1930s) provides a 
link between the TD and the FD 
analysis
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Fourier Example (1)
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TD: The serie s=s1+s2+s3
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FD: The periodogram of s
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Fourier Example (II)

Frequency=5 Hz

Frequency=15 Hz

Frequency=30 Hz
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TD: snew = (s1)+2(s2)+4(s3)
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FD: The periodogram of snew
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TD and FD: s and snew

S1: Frequency=5 Hz

S2: Frequency=15 Hz

S3: Frequency=30 Hz

snew = (s1)+2(s2)+4(s3)
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Fourier Analysis in a nutshell...
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Wolfer’s Sunspot data 
revisited
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The periodogram (I)
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The periodogram (II): P=1/ω
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Summary Part I: Introduction

Spectral analysis: the frequency domain
Tools in the frequency domain
– the fast fourier transformation (FFT)
– the periodogram
– the filters
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S1 + noise... (rem: freq s1=5)
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In the frequency domain
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Filters in time domain

A linear filter simply converts a time 
series X(t) into another time series Y(t) 
by a linear transformation

Several kinds: linear vs nonlinear
– Infinite Impulse Response filters (IIR)
– Finite Impulse Response filters (FIR)

• NonCausal Finite Impulse Response filters
• Causal Finite Impulse Response filters

X(t) Filter Y(t)
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The output Y(t) is the result of the 
convolution of the input X(t) with a 
coefficient vector ω(t)

X(t) Filter Y(t)
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Infinite Impulse Response (IIR):

Finite Impulse Response (FIR):
– NonCausal FIR filters:

– Causal FIR filters:

Filters in time domain
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A causal FIR filter...

The M+1 period simple moving average

If M=1...
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S1 (freq=5hz)+noise...
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Causal FIR filter. Mav2 (M=1)

34

Causal FIR filter. Mav4 (M=3)

35

In the frequency domain...
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Summary Part I: Introduction

Spectral analysis: the frequency domain
Tools in the frequency domain
– the fast fourier transformation
– the periodogram
– the filters

Drawbacks of the frequency domain
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Spectral analysis: 
the frequency domain

The spectral analysis gives us a way of 
studying stationary time series which 
complements those used in time 
domains

38

International airline passengers:
monthly totals; thousands of passengers; 

January 1949 to December 1960 

49 50 51 52 53 54 55 56 57 58 59 60 61

200

300

400

500

600
airline

SOURCE: Box and Jenkins (1976), Time 
Series Analysis Forecasting
and Control, Holden--Day
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TD: Strend=s+time

40

FD: the periodogram of Strend

41

Drawbacks of the FD

In transforming to the frequency 
domain, time information is lost. 
However, most interesting signals 
contain numerous nonstationary or 
transitory characteristics: 
– drift, trends, abrupt changes...
– beginnings and ends of events...
– structural changes...
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TD: Suppose a change in s...
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FD: ... no news

44

TD: Suppose a structural 
change...

45

FD: ... no news
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Summary Part I: Introduction

Spectral analysis: the frequency domain
Tools in the frequency domain
– the fast fourier transformation
– the periodogram
– the filters

Drawbacks of the frequency domain
The wavelets approach: Part II
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Summary Part II: The wavelets

Some wavelets applications
Basic Elements of the wavelets world
– the mother wavelet
– the scale/frequency concept
– the output

The continuos wavelet transformation
The filters revisited: the DWT

48

Some wavelets applications

Analysis (detection of crashes, edges...)
Compression (reduction of storage)
Smoothing (attenuation of noise)
Synthesis (reconstruction after comp.)
Economics uses:
– Seasonality Filtering
– Denoising
– Identification of structural breaks
– Multiscale cross-correlation
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What is a Wavelet?

A wavelet is a waveform of effectively 
limited duration that has an average 
value of zero. 
Comparing with sine waves...
– sinusoids do not have limited duration and, 
– sinusoids are smooth and predictable whether 

wavelets tend to be irregular and asymmetric. 

See: 
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Wavelet vs. Fourier analysis

Fourier analysis consists of breaking 
up a signal into sine waves of various 
frequencies. 
Wavelet analysis is the breaking up 
of a signal into shifted and scaled 
versions of the original (or mother) 
wavelet. 
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Scaling and shifting...

Scaling a wavelet simply means 
stretching (or compressing) it. 
– The smaller the scale factor, the more 

"compressed" the wavelet. 
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Scaling and shifting...

Shifting a wavelet simply means 
delaying (or hastening) its onset. 
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Continuos Wavelet Transform 
in 4 steps (CWT)

1. Take a wavelet, 
– and compare it to a section at the start of the 

original signal. 

2. Calculate C, 
– C represents how closely correlated the wavelet is 

with this section of the signal. 
– The higher C is, the more the similarity.  
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CWT

3. Shift the wavelet to the right and 
repeat steps 1 and 2

4. Scale (stretch) the wavelet and 
repeat steps 1 through 3
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CWT output

We have the coefficients produced
– at different scales or levels 
– by different sections of the signal. 

A typical representation is a plot:
– on which the x-axis represents position along the 

signal (time), 
– the y-axis represents scale, 
– and the color at each x-y point represents the 

magnitude of the wavelet coefficient C. 
• The brighter the color, the bigger the coefficient

1 2

3
4

56

CWT output

57

CWT of ss=[s1:s3:s2]

REM: The smaller the scale factor, the more "compressed" the wavelet.
The brighter the color, the bigger the coefficient 
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CWT of sbreak: s1+break

59

Wavelet vs. Fourier analysis

60

Continuos vs Discrete W.T.

Continuos?
– the CWT can operate at every scale 
– the CWT is also continuous in terms of shifting

But:
– Calculating wavelet coefficients at every possible 

scale is a fair amount of work,
– and it generates an awful lot of data. 
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Summary Part II: The wavelets

Some applications...
Basic Elements of the wavelets world
– the mother wavelet
– the scale/frequency concept
– the output

The continuos wavelet transformation
– some applications
– what is ‘continuos’ in the CWT?

The filters revisited: the DWT 62

Continuos vs Discrete W.T.

Discrete Wavelet Transform (DWT)
– DWT choose only a subset of scales and positions 
– scales and positions are based on powers of two

An efficient way to implement this 
scheme was developed in Mallat (1988) 
– a filter algorithm: 

• a convolution between wavelet and signal
– a filter into which a signal passes, 
– and out of which wavelet coefficients emerge. 

It is fast wavelet transform
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Remembering a CFIR filter...

The M+1 period simple moving average

If M=1...
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The Discrete Wavelet 
Transform (DWT)

The DWT algorithm (I):

Low-pass filter

High-pass filter

65

Filters derived from Haar
(1909) wavelets

The High-pass filter: 

The Low-pass filter: 

66

Filters derived from Haar
(1909) wavelets 

Example s=[4,6,10,12,8,6,5,5]; N=8

The High-pass filter: 
– s*HPf= sqrt(2)*[2 1  2 1 -2 -1  -0.5 0]

The Low-pass filter: 
– s*LPf= sqrt(2)*[2 5  8 11 10 7 5.5  5]
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The Discrete Wavelet 
Transform (DWT)

The DWT algorithm:

Low-pass filter

High-pass filter

downsampling
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Filters derived from Haar
(1909) wavelets 

Example s=[4,6,10,12,8,6,5,5]; N=8

The High-pass filter + downsamplig:
– s*HPf= sqrt(2)*[2 1  2 1 -2 -1  -0.5 0]
– s*HPf*Downl=sqrt(2)*[ 1 1 -1  0]==> cD

The Low-pass filter + downsampling: 
– s*LPf= sqrt(2)*[2 5  8 11 10 7 5.5  5]
– s*LPf*Downl= sqrt(2)*[ 5   11  7  5]==>cA
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Haar (1909) wavelets

Energy=4^2+6^2+...+5^2=446

E=440 E=6

70

Haar wavelets example

71

Haar wavelets example

72

Haar wavelets example
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DWT applications

Reconstruction
Multiresolution Analysis
Compression of audio signals
Removing noise
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Wavelets reconstruction

75

Haar (1909) wavelets: filters 
for reconstruction
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Haar wavelets: reconstruction 
of the approximation signal

Upsampling:

cA=[5r2,11r2,7r2,5r2]; N=4
cA+Upsamp=[5r2,0,11r2,0,7r2,0,5r2,0]
cA+Ups+HPRf=[5,5,11,11,7,7,5,5]=ApS

Original signal=[4,6,10,12,8,6,5,5]; N=8

77

Haar (1909) wavelets: 
reconstruction of the signal

78

Haar (1909) wavelets: 
reconstruction of the signal
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DWT applications

Reconstruction
Multiresolution Analysis
Compression of audio signals
Removing noise
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Summary Part II: The wavelets

Some wavelets applications
Basic Elements of the wavelets world
– the mother wavelet
– the scale/frequency concept
– the output

The continuos wavelet transformation
The filters revisited: the DWT
– some DWT applications

References
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About Murcia, in English: http://www.carm.es/ctyc/murciaturistica/Portal/iya.menu.menu?idi=2
http://www.um.es/english/
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