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Abstract

We propose a new robust method of estimating volatility based on extreme values of asset
prices. We prove rigorously the independence of the extreme value robust volatility estimators
using the closed form solutions of (1) Reflection principle of the standard Brownian motion,
and (2) The joint probability of the running maximum and the drawdown of the Brownian
motion. Theoretically, we show that the new Robust Volatility Ratio is unbiased both in the
population as well as in finite samples. On the empirical side, we find that the global stock
indices (S&P 500, FTSE, CAC 40, DAX 30 and NIFTY) are generically downward biased
because of the random walk effect.
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1. Introduction

Estimation of Volatility in asset returns has been an important area of research in the
finance literature. Volatility is considered to be a valuable measure to estimate and used in
diverse fields such as risk management, portfolio management, asset allocation, option pricing,
foreign exchange, and the term structure of interest rates. Since volatility is a measure of
dispersion and not observable, an extensive research in this area has resulted in developing
various volatility estimator models such as GARCH type models, stochastic volatility models,
range-based volatility models, realized volatility models and absolute return volatility models.

In the literature, the volatility estimation models in the financial markets are based on the
two famous proxy variables (1) the squared returns i.e. standard deviation and (2) the absolute
returns i.e. absolute deviation. Statistically, ‘under ideal circumstances ’ the standard devia-
tion is considered to be more efficient measure of dispersion than the absolute mean deviation
[Fisher (1920), Stigler (1973), Aldrich (1997), Hinton (1995)]. However, in realistic situations
where some of the measurements are in error (i.e.outliers) or for the distributions other than
perfect normal, the superiority of standard deviation over the absolute mean deviation dimin-
ishes [Eddington (1914), Fama (1963), Barnett & Lewis (1978), Huber (1981)].

The contribution of this paper is three fold. Firstly, the volatility estimation models based on
squared returns (i.e. standard deviation) as a proxy for volatility has been explored extensively
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in the financial markets. Recently there has been an increased focus on developing volatility
models based on absolute return deviations. This paper contributes to the existing literature
on the absolute return volatility modeling.The volatility model using absolute returns is found
to be more robust against non-normality [Davidian & Carroll (1987)]. The specification of
volatility based on absolute returns is empirically found to produce better volatility forecasts
relative to squared returns [Taylor (1986), Ding et al. (1993), Ederington & Guan (2004)].
Theoretically it was proved that absolute returns are more persistent and better in predicting
future volatility than squared returns [Forsberg & Ghysels (2007)]. Absolute return volatility
is easier to calculate and as a risk indicator has approximately the same sensitivity as Realized
volatility [Zheng et al. (2014)]. However, Realized volatility estimators requires much effort
and resources to implement as argued by [Rogers & Zhou.F. (2008)].

In this paper we use the Classical Robust Volatility Estimator (CRVE) which is based on
absolute returns and define it as

Sigx =
1

N

[ N∑
i=1

|xi|
]

(1)

Here, we define x as the terminal value of the standard Brownian motion path. In other
words, xi is the daily closing return of an asset at ith day. That is to say, in case of CRV E we
are taking the average of the absolute deviations of an asset x for the days i to N .

Secondly, it is well established in the literature that volatility estimation models based on
extreme values of asset prices {High, Low, Open, Close} are more efficient and convenient
when compared to the usual volatility estimator i.e. standard deviation. In this paper, we
contribute to the literature by proposing extreme value robust volatility estimator that uses
absolute returns instead of the squared returns. The volatility estimators that uses the extreme
values of asset prices in the literature are Parkinson (1980) estimator that uses the {High,
Low} prices, Garman & Klass (1980) estimator that uses {High, Low, Open, Close} prices,
Rogers & Satchell (1991) estimator,Kunitomo (1992) estimator, Yang & Zhang (2000)estimator,
Alizadeh et al. (2002),Chou (2005) and Maximum Likelihood estimator as in Ball & Torous
(1984),Magdon Ismail & Atiya (2003) and Horst et al. (2012). In this paper we propose the
following Extreme Value Robust Volatility Estimators (EVRVE) and define the same as

Sigux =
1

N

[ N∑
i=1

(u− |xi|)
]

(2)

Sigvx =
1

N

[ N∑
i=1

(|v| − |xi|)
]

(3)

Siguxvx = avg{Sigux, Sigvx} =
Sigux+ Sigvx

2
(4)

Here, we define u = 2b − x and v = 2c − x where {x,b,c} are the terminal value, running
maximum and running minimum of the standard Brownian motion path respectively. In other
words, {x,b,c}are the daily {Closing, High and Low} return series respectively.

Thirdly, we provide a theoretical framework in which the asset returns are assumed to
follow the exponential mixture of normal distributions 3and find the closed form solution to the

3 Mixture of normal distributions is more flexible to capture the leptokurtic and multimodal characteristics
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joint probability density of the running maximum and the drawdown of the standard Brownian
motion with no drift parameter at the random stopping time. Based on the theoretical result
we show the independence of the proposed extreme value robust volatility estimator relative
to the classical robust volatility estimator. We further propose the Robust Volatility Ratio to
show that the EVRVE is unbiased relative to the CRVE both in the population and in finite
samples.

The rest of the paper is organized as follows. We first discuss the methodology part where
we provide details about the exponential mixture of normal distribution and the theoretical
framework. Second we discuss the robust volatility estimation and show the independence
and bias properties of extreme value robust volatility estimators relative to the classical robust
volatility estimators. Finally we provide the empirical findings of our model based on the global
stock indices like S & P 500, CAC 40, DAX 30 FTSE 100 and NIFTY.

2. Methodology

In this section, we first explain the Exponential Mixture of Normal distribution setup. Secondly,
we find the closed form solution for the joint probability density of the running maximum
and the drawdown of the Standard Brownian Motion with no drift parameter at the random
stopping time τ ∼ Exp(λ) 4 and is independent of the Brownian Motion. Thirdly, based on
the theoretical result, we show that the proposed robust volatility estimator based on extreme
values of asset prices is independent of the usual volatility estimator based on absolute value of
the daily closed returns alone. Fourthly, we propose the Robust Volatility Ratio (RVR) to show
that Extreme Value Robust Volatility Estimator (EVRVE) is unbiased relative to the Classical
Robust Volatility Estimator(CRVE) in the population. Also in the finite sample, we propose
the correction procedure to adjust the bias in the robust volatility estimator based on extreme
values of asset prices.

3. Exponential Mixture of Normal Distribution:

It is well assumed that asset returns follow Gaussian normal process motivated by the view that
in the long run the financial asset returns are approximately normally distributed. However,
the distribution of the real world financial asset returns data is found to exhibit substantial fat
tails and also asymmetry around the mean relative to those of Normal distribution. Keeping
this in view let us introduce the exponential mixture of normal distribution for asset returns
as explained below.

That is to say, let us suppose that the daily return xt conditional on the unobserved stochastic
volatility for day t is distributed normally with mean 0 and variance σ2 = Yt.

(xt | Yt) ∼ N(0, σ2 = Yt) (5)

Now let us assume that the unobserved stochastic volatility Yt is distributed exponentially with
parameter5 λ. That is

Yt ∼ Exp(λ) (6)

of real world financial time series data.[See Clark (1973),Kon (1984)]
4 Here λ is the exponential parameter
5We know that the probability density function of the exponential distribution with parameter λ is given as

fYt
(y) = λe−λy for y>0.
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Thus, we call the above setup as the Exponential Mixture of Normal distribution.

Claim 1: The Exponential Mixture of the Normal distribution is the Double Exponential.
Proof: Let us suppose that xt is Double Exponentially distributed. Therefore the unconditional
probability density function of Double exponential distribution with the exponential parameter
β is given as,

fxt(x) =
1

2
βe−β(|x|)forβ>0, x ∈ R.

We know that the unconditional characteristic function of xt for a random variable ζ is

ϕxt(ζ) = E[eiζxt ] =

∫ ∞
−∞

eiζx
{1

2
βe−β(|x|)

}
dx

Now let us decompose the above definite integral into parts as I(+) and I(-). That is to say,
we have6

I(+) =

∫ ∞
0

eiζx
{1

2
βe−βx

}
dx

=
1

2
β

∫ ∞
0

e−[β−iζ]xdx =
1

2
β
[ 1

β − iζ

]

Also we have, I(−) =
∫ 0

−∞ e
iζx
{

1
2
βeβx

}
dx.

Now put w = −x⇒ x = −w. Also if x ∈ (−∞, 0)⇒ w ∈ (0,∞) and dx=dw.

Therefore we have,

I(−) =

∫ ∞
0

e−iζw
{1

2
βe−βw

}
dw

=
1

2
β

∫ ∞
0

e−[β+iζ]wdw =
1

2
β
[ 1

β + iζ

]
Add both the integral parts and we get

ϕxt(ζ) = I(+) + I(−)

=
1

2
β
[ 1

β − iζ
+

1

β + iζ

]
=

1

1 + ( 1
β2 )ζ2

That is to say, we have shown that if the probability density function of xt is double expo-
nentially distributed as fxt(x) = 1

2
βe−β(|x|) for β>0 and x ∈ R , then the unconditional

characteristic function is given as

ϕxt(ζ) =
1

1 + ( 1
β2 )ζ2

(7)

6 We make use of the integral property
∫∞
0
e−mxdx = 1

m in solving the integral

4



We know that the unconditional characteristic function of xt where xt ∼ N(0, σ2 = Yt) and
Yt ∼ Exp(λ) is given as 7

ϕxt(ζ) =
1

1 + ( 1
2λ

)ζ2
(8)

Therefore by comparing the above two equations, we get

β2 = 2λ⇒ β =
√

2λ

Hence, we have shown that the Exponential Mixture of the Normal distribution is the Double
Exponential with the parameter β =

√
2λ.

4. Theoretical Framework

4.1. Reflection Principle for Brownian Motion :

Lemma 1: The reflection principle for the Brownian Motion states that when µ = 0,

P (Xt ≤ x,Mt ≥ b) = P (Xt ≥ u)

∣∣∣∣
u=2b−x

= 1− Φ
( u√

(t)

)∣∣∣∣
u=2b−x

for b>0, x ≤ b where ’x’ and ’b’ are the specific levels on the Brownian Motion path. That is
to say, the joint probability of the terminal value (Xt) and the running maximum (Mt) of the
Standard Brownian Motion at a fixed time ’t’ with no drift parameter (i.e.µ = 0) will be equal
to the uni-variate probability.

Proof: In order to prove this, let us define the random stopping time of the Brownian
Motion for specified level b defined as

Tb = inf{t ≥ 0, Xt ≥ b} for b>0

By using the symmetric property of the Brownian Motion over the set (t ≥ Tb) we have,

P (Xt ≤ x | FTb) = P (Xt ≥ u | FTb) (9)

7 See Appendix A, Claim 1 and Claim 2 results to get the values of conditional and unconditional charac-
teristic function of xt where xt ∼ N(0, σ2 = Yt) and Yt ∼ Exp(λ)
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Now let us consider the L.H.S of the equation (9). We get that

L.H.S = P (Xt ≤ x | FTb)
∣∣∣∣
t≥Tb

= E{1(Xt≤x) | FTb}
∣∣∣∣
t≥Tb

= E
{
E{1(Xt≤x) | FTb}.1(t≥Tb)

}
= E

{
E{1(Xt≤x).1(t≥Tb) | FTb}

}
= E

{
E{1(Xt≤x,t≥Tb) | FTb}

}
= E{1(Xt≤x,t≥Tb)}

= P (Xt ≤ x, t ≥ Tb)

∣∣∣∣
t≥Tb

= P (Xt ≤ x,Mt ≥ b)

∣∣∣∣
t≥Tb

Therefore we have shown that

P (Xt ≤ x | FTb)
∣∣∣∣
t≥Tb

= P (Xt ≤ x,Mt ≥ b)

∣∣∣∣
t≥Tb

Now consider the R.H.S of the equation (9). We get that,

R.H.S = P (Xt ≥ u | FTb)
∣∣∣∣
t≥Tb

= E{1(Xt≥u) | FTb}
∣∣∣∣
t≥Tb

= E
{
E{1(Xt≥u).1(t≥Tb) | FTb}

}
= E{1(Xt≥u,t≥Tb)} = P (Xt ≥ u, t ≥ Tb)

= P (Xt ≥ u,Mt ≥ b) = P (Xt ≥ u)

= 1− Φ
( u√

(t)

)
Thus by making use of the symmetric property of the Brownian motion, we have shown that

the joint probability of the terminal value and running maximum of the Standard Brownian
Motion converges to a uni-variate probability. Thus the reflection principle of the Brownian
Motion when µ = 0 and for x ≤ b, b ≥ 0 is given as,

P (Xt ≤ x,Mt ≥ b) = P (Xt ≥ u)

∣∣∣∣
u=2b−x

= 1− Φ
( u√

(t)

)∣∣∣∣
u=2b−x

(10)

Hence the Lemma is proved.
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4.2. Joint Probability of the Running Maximum and the Drawdown of the Brownian Motion :

Lemma 2: Let (Mτ , Yτ ) denote the value of the running maximum and the ’drawdown’ of the
Standard Brownian Motion at a stochastic time τ .

The ’drawdown’ of the Brownian Motion is defined as Y = M −X.

Let us assume that the stochastic time τ is independent of the Brownian Motion and is dis-
tributed exponentially with the parameter λ i.e. τ ∼ Exp(λ).

Then the joint probability of Mτ and Yτ where b ≥ 0, y ≥ 0 and τ ∼ Exp(λ) is,

P (Mτ ≥ b, Yτ ≥ y) = e−β.b.e−β.y (11)

Proof: Let us recall the result of Lemma 1 of the ABC procedure paper [Maheswaran & Kumar
(2013)]. It says,

‘Let (Xt,Mt) denote the value of a stochastic process and its running maximum at a fixed
point in time ’t’. Let us say that H(x, b) = P (Xt ≤ x,Mt ≥ b) for b>0, x ≤ b. If u is sufficient
for H(x, b) and H is differentiable with respect to both arguments, then for b>0, y>0, we have,

P (Yt ≥ y,Mt ≥ b) = 2P (Xt ≤ x,Mt ≥ b)

∣∣∣∣
x=b−y

’

We make use of the above result to prove our Lemma.Now let us consider the L.H.S of the
equation (11), we get,

L.H.S = P (Mτ ≥ b, Yτ ≥ y)

=

∫ ∞
0

λe−λtP (Mt ≥ b, Yt ≥ y)dt

=

∫ ∞
0

λe−λt2.P (Xt ≤ x,Mt ≥ b)

∣∣∣∣
x=b−y

dt

=

∫ ∞
0

λe−λt2.P (Xt ≥ u)

∣∣∣∣
u=b+y

dt

=

∫ ∞
0

λe−λt2.
{∫ ∞

0

1√
t
Φ
( Z√

t

)}
dtdz

=

∫ ∞
Z=u

{∫ ∞
t=0

2.λe−λt
1√
t
Φ
( Z√

t

)
dt
}
dz

=

∫ ∞
Z=u

2.
{∫ ∞

t=0

λe−λt
1√
t
Φ
( Z√

t

)
dt
}
dz

=

∫ ∞
Z=u

2.
{1

2
βe−β(|Z|)

}
dz

=

∫ ∞
Z=u

β.e−β.Zdz

Now let us say w = βz ⇒ z = w
β
⇒ dz = dw

β
. Also if z ∈ (u,∞) then w ∈ (βu,∞) .
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Therefore we have,

L.H.S = P (Mτ ≥ b, Yτ ≥ y)

=

∫ ∞
β.u

e−w.dw

= e−β.u = e−β(b+y)

= e−β.b.e−β.y over b ≥ 0, y ≥ 0

= R.H.S

Since L.H.S = R.H.S for b ≥ 0, y ≥ 0, we have,∫ ∞
0

λe−λtP (Mt ≥ b, Yt ≥ y)dt = e−β.b.e−β.y

That is to say, when τ ∼ Exp(λ), we have

P (Mτ ≥ b, Yτ ≥ y) = e−β.b.e−β.y

Therefore the joint probability of the running maximum and the drawdown of the Standard
Brownian Motion at a stochastic time τ ∼ Exp(λ) which is independent of the Brownian Mo-
tion are i.i.d exponential random variables with the parameter β where β =

√
2λ.

Hence Lemma is proved.

5. Robust Estimation of Volatility for Brownian Motion

In this section, we assume that the process Xτ follow Brownian Motion with no drift parameter
at a random stopping time τ . We suppose that the random stopping time τ is exponentially
distributed with parameter λ and is independent of the Brownian Motion. Based on this , we
derive Robust extreme value estimators and discuss their properties.

Let (Mτ , Yτ ) denote the value of the running maximum and the ’drawdown’ of the Standard
Brownian Motion with no drift parameter at a stochastic time τ . Let b,x be specific levels on
the Brownian Motion path where b>0, x>0 and b ≥ x.

Let us introduce the Classical Robust Volatility Estimator (CRVE) ‘Sigx ’ based on absolute
returns by letting Y2 = |x| defined as,

Sigx =
1

N

[ N∑
i=1

|xi|
]

(12)

We introduce the Extreme Value Robust Volatility Estimator(EVRVE) ‘Sigux ’ by letting

Y1 = u− |x|
∣∣∣∣
u=2b−x

defined as,

Sigux =
1

N

[ N∑
i=1

(u− |xi|)
]

(13)
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By using the symmetric property of the Brownian Motion, we can define ‘Sigvx ’by letting

Y3 = v − |x|
∣∣∣∣
v=2c−x

as,

Sigvx =
1

N

[ N∑
i=1

(v − |xi|)
]

(14)

Here, we have defined {u,v} as u = 2b−x and v = 2c−x where {x,b,c} are the terminal value,
running maximum and running minimum of the standard Brownian motion path respectively.
In other words, {x,b,c}are the daily {Closing, High and Low} return series respectively.

Based on the Extreme Value Robust Volatility Estimators, Sigux and Sigvx, we can define
another estimator as,

Siguxvx = avg{Sigux, Sigvx} =
Sigux+ Sigvx

2
(15)

We further show the independence of Y1 and Y2 by using the joint probability densities and by
applying the theoretical framework of Lemma 1 and Lemma 2. Later we show the bias property
of EVRVE relative to the CRVE both in the population and in the finite sample by allowing
the proposed Robust Volatility Ratio.

5.1. Independence property of Y1 and Y2:

Let us introduce the generic terms X1 and X2 which are i.i.d exponential with parameter
β =
√

2λ and is defined as
X1 = b = Mτ & X2 = y = Yτ

Then the joint probability density of {X1, X2} at specific points {x1, x2} for x1>0, x2>0 can
be written as

fX1,X2(x1, x2) = [β.e−β.x1 ][β.e−β.x2 ] (16)

since x1, x2 are i.i.d exponential with parameter β where β =
√

2λ based on Lemma 2.
Let us introduce Y1 and Y2 defined as

Y1 = u− |x|
∣∣∣∣
u=2b−x

& Y2 = x

In order to show the independence property of Y1 and Y2 , let us consider two cases.

Case 1: Let us consider the special case when 0<x2<x1 .
In such a case we have x1 − x2>0.
Therefore , |x1 − x2| = x1 − x2.
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We have Y1 based on robust extreme values defined as,

Y1 = u− |x|
∣∣∣∣
u=2b−x

= (2b− x)− |x|
∣∣∣∣
x=b−y

= (b+ y)− |b− y|
∣∣∣∣
b=x1,y=x2

= (x1 + x2)− |x1 − x2|
= (x1 + x2)− (x1 − x2)

= 2.min(x1, x2)

∣∣∣∣
0<x2<x1

= 2.x2

Similarly, let us define 8 Y2 as
Y2 = x = b− y = x1 − x2

That is to say, when 0<x2<x1 we have,

Y1 = 2.x2 & Y2 = x1 − x2

Now let us consider the inverse transformation of Y1 and Y2 , we get

x2 =
Y1
2

and x1 = Y2 + x2 = Y2 +
Y1
2

=
1

2
.Y1 + Y2

Now let us represent the same in matrix notation, we get[
x1
x2

]
=

[
1
2

1
1
2

0

]
×
[
Y1
Y2

]
The Jacobian of the transformation is given by

J =

[
1
2

1
1
2

0

]

Thus we have, |det(J)| = 1
2

Now,the Domain of the generic random variables X1, X2 is given by DA = {(x1, x2) :
0<x2<x1} . The Domain of the transformed random variables Y1, Y2 is given by DB = {(y1, y2) :
y1>0, y2>0}.

8We define ’y’ as the drawdown of the Brownian Motion i.e. y = b− x. Therefore we can write x = b− y
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Therefore, let us derive the joint probability density 9as

gY1,Y2(y1, y2) = |det(J)|fX1,X2(x1, x2)

=
1

2
β.e−β[

1
2
y1+y2].β.e−β.[

1
2
y1]

=
1

2
β2.e−β[

1
2
y1+y2+

1
2
y1]

=
1

2
β2.e−β[y1+y2]

= [β.e−β.y1 ].[
1

2
.β.e−β.y2 ]

That is to say, the joint probability density of Y1, Y2 when 0<x2<x1 is given by

gY1,Y2(y1, y2) = [β.e−β.y1 ].[
1

2
.β.e−β.y2 ]

∣∣∣∣
DB

(17)

Case 2: Now let us consider the special case when 0<x1<x2.
In such a case we have x1 − x2<0.
Therefore |x1 − x2| = −(x1 − x2) = x2 − x1.
We have Y1 defined as

Y1 = u− |x|
∣∣∣∣
u=2b−x

= (2b− x)− |x|
∣∣∣∣
x=b−y

= (b+ y)− |b− y|
∣∣∣∣
b=x1,y=x2

= (x1 + x2)− |x1 − x2|
= (x1 + x2)− (x2 − x1)

= 2.min(x1, x2)

∣∣∣∣
0<x1<x2

= 2.x1

Similarly, let us define Y2 as
Y2 = x = b− y = x1 − x2

That is to say, when 0<x1<x2 we have,

Y1 = 2.x1 and Y2 = x1 − x2

Now let us consider the inverse transformation of Y1 and Y2 , we get

x1 =
Y1
2

and x2 = x1 − Y2 =
1

2
.Y1 − Y2

9 In case 1, we have x1 = 1
2y1 + y2 and x2 = 1

2y1
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Now let us represent the same in matrix notation, we get[
x1
x2

]
=

[
1
2

0
1
2
−1

]
×
[
Y1
Y2

]
The Jacobian of the transformation is given by

J =

[
1
2

0
1
2
−1

]

Thus we have, |det(J)| = 1
2

Now, the Domain of the generic random variables X1, X2 is given by DA = {(x1, x2) :
0<x1<x2}. The Domain of the transformed random variables Y1, Y2 is given by DB = {(y1, y2) :
y1>0, y2<0}.

Therefore, let us derive the joint probability density 10 of Y1, Y2 as

gY1,Y2(y1, y2) = |det(J)|.fX1,X2(x1, x2)

=
1

2
.β.e−β[

1
2
y1].β.e−β.[

1
2
y1−y2]

=
1

2
.β2.e−β[

1
2
y1+

1
2
y1−y2]

=
1

2
.β2.e−β[y1−y2]

= [β.e−β.y1 ].[
1

2
.β.e−β.|y2|]

That is to say, the joint probability density of Y1, Y2 when 0<x1<x2 is given by

gY1,Y2(y1, y2) = [β.e−β.y1 ].[
1

2
.β.e−β.|y2|]

∣∣∣∣
DB

(18)

Finally,let us combine the results of both the case (1), (2).That is from equation (17) , (18) we
get the joint probability density of Y1, Y2 as

gY1,Y2(y1, y2) = [β.e−β.y1 ].[
1

2
.β.e−β.|y2|]

∣∣∣∣
y1>0 , y2∈R

(19)

That is to say we have shown that Y1&Y2 are independent of each other as Y1 is exponentially
distributed with parameter β, [ i.e. Y1 ∼ Exp(β). ] and Y2 is Double exponentially distributed
with parameter β, [ i.e. Y2 ∼ DExp(β)].

Hence we have shown that Y1 which is defined as Y1 = u− |x| = 2.min(b, y) is independent of
Y2 which is defined as Y2 = x = b− y with specific distributions. That is,

10 In case 2, we have x1 = 1
2y1 and x2 = 1

2y1 − y2
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Y1 ∼ Exp(β) and Y2 ∼ DExp(β)

5.2. Bias property :

In this section we theoretically check the bias property of the Extreme Value Robust Volatility
Estimator (EVRVE) relative to the Classical Robust Volatility Estimator (CRVE) both in the
case of the population and in the case of finite sample. We show that in the case of population,
EVRVE is unbiased relative to the CRVE by finding the proposed Robust Volatility Ratio(RVR)
to be equal to 1.Also we allow the Finite Sample Correction Procedure to adjust the insignificant
bias of EVRVE relative to the CRVE in the case of finite sample. We observe that the proposed
Modified Robust Volatility Ratio(MRVR) is unbiased and is equal to 1.

5.2.1. Bias in the Population

Theorem 1 : In the population, the Robust Volatility Ratio is unbiased. That is to say,
the Extreme Value Robust Volatility Estimator is unbiased relative to the Classical Robust
Volatility Estimator in the case of population. That is,

Robust Volatility Ratio (RVR) =
{E(u− |x|)

E(|x|)

}
= 1.

Proof : Let us consider Y1 defined as Y1 = u− |x| where Y1 ∼ Exp(β) and β =
√

2.λ.
In order to get the Extreme Value Robust Volatility Estimator (EVRVE) we take the Expected
value of Y1. That is to say,

E(Y1) = E(u− |x|) =

∫ ∞
0

w.β.e−β.wdw

Now put y = β.w ⇒ w = y
β
. Therefore,

E(u− |x|) =

∫ ∞
0

y

β
.e−ydy =

1

β
.

∫ ∞
0

y.e−ydy

=
1

β
.(1) =

1√
2.λ

Hence in the population, we define the Extreme Value Robust Volatility Estimator (EVRVE)
as,

E(u− |x|) =
1√
2.λ

(20)

Now let us consider Y2 defined as Y2 = |x| where 11 Y2 ∼ Exp(β) and β =
√

2.λ.

In order to get the Classical Robust Volatility Estimator (CRVE) , we take the expected
value of Y2. That is to say,

E(Y2) = E(|x|) =
1

β
=

1√
2.λ

11In section 5.1, from equation 19, we have shown Y2 defined as , Y2 = x is Double Exponentially distributed.
Hence we have its modulus i.e. Y2 defined as , Y2 = |x| is Exponentially distributed.
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Hence in the population, we have the Classical Robust Volatility Estimator (CRVE) defined
as,

E(|x|) =
1√
2.λ

(21)

Now let us define the Robust Volatility Ratio in the population as

Robust Volatility Ratio (RVR) =
E(u− |x|)
E(|x|)

=

1
β

1
β

= 1 (22)

We have found the Robust Volatility Ratio to be equal to 1. That is to say, EVRVE is unbiased
relative to CRVE in the population at the random stopping time τ of the Brownian Motion
with no drift parameter.

Hence we have proved the Theorem.

5.2.2. Bias in the Finite Sample

In this section, we check the bias property in the case of finite sample. Let us recall Y1 defined
as Y1 = u− |x| = 2.min(b, y) and Y1 ∼ Exp(β).

Since we know that the exponential distribution with parameter β is same12as the Gamma
distribution with parameter {α,N} where α = β and N = 1. Therefore, we can say that

Y1 ∼ Exp(β) is same as Y1 ∼ Γ(α,N)

∣∣∣∣
(α=β,N=1)

That is to say, if we consider
{
yi : 1 ≤ i ≤ N

}
∼ iid Exp(β), then each individual

yi ∼ Γ(α,N)

∣∣∣∣
(α=β,N=1)

Therefore their sum will also have the probability density function of Gamma distribution.
That is,

N∑
i=1

yi ∼ Γ(α,N)

∣∣∣∣
(α=β)

Now let us find about the distribution of the average of the individual

yi ∼ Γ(α,N)

∣∣∣∣
(α=β,N=1)

12 We use the mathematical result that Exp(β) = Γ(α,N)

∣∣∣∣
(α=β ,N=1)
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In order to find that, let us consider the generic random variables namely,

X =
N∑
i=1

yi ∼ Γ(α,N)

∣∣∣∣
(α=β)

W =
1

N

[ N∑
i=1

yi
]

=
1

N
.X

Now let us take the inverse transformation and we get X=N.W

The Jacobian of the transformation can be written as ∂X
∂W

= N

We derive the joint probability density as,

gW (w) = |N |fX(x)

∣∣∣∣
x=N.W

= N.
αN

Γ(N)
.e−α.x.xN−1

∣∣∣∣
x=N.W

= N.
αN

Γ(N)
.e−α.N.W .(N.W )N−1

=
(α.N)N

Γ(N)
.e−(α.N).W .(W )N−1

= Γ(α∗, N)

∣∣∣∣
α∗=α.N

That is to say, we have proved that if the individual yi are Gamma distributed, then the average
is also Gamma distributed. Therefore,

1

N

[ N∑
i=1

yi
]
∼ Γ(α∗, N)

∣∣∣∣
α∗=α.N

Therefore, we define the Extreme Value Robust Volatility Estimator in the finite sample as

Sigux =
1

N

[ N∑
i=1

(u− |xi|)
]
∼ Γ(α∗, N)

∣∣∣∣
α∗=α.N

(23)
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Now let us find the expected value of the estimator Sigux. We get,

E[Sigux] = E[Γ(α∗, N)

∣∣∣∣
α∗=α.N

]

=

∫ ∞
0

w.
(α∗)N

Γ(N)
.e−α

∗.w.wN−1dw

=
(α∗)N

Γ(N)
.

∫ ∞
0

e−α
∗.w.wNdw

=
(α∗)N

Γ(N)
.
Γ(N + 1)

(α∗)N+1

=
Γ(N + 1)

Γ(N)
.

(α∗)N

(α∗)N+1

=
N.Γ(N)

Γ(N)
.

(α.N)N

(α.N)N+1
=

1

α

Therefore in finite samples we have,

E[Sigux] = E[Γ(α∗, N)

∣∣∣∣
α∗=α.N

] = E

{
1

N

[ N∑
i=1

(u− |xi|)
]}

=
1

α

Thus the Expected value of the EVRVE in the finite sample is given by,

E[Sigux] =
1

α
where α = β =

√
2.λ (24)

Now let us recall Y2 defined as Y2 = |x| and Y2 ∼ Exp(β)

∣∣∣∣
β=
√
2.λ

We know that Y2 ∼ Exp(β) is same as Y2 ∼ Γ(α,N)

∣∣∣∣
(α=β,N=1)

That is to say, |xi| ∼ Γ(α,N)

∣∣∣∣
(α=β,N=1)

Therefore their sum will also have the probability density function of Gamma distribution.

N∑
i=1

|xi| ∼ Γ(α,N)

∣∣∣∣
(α=β)

We also get that their average is also Gamma distributed.That is

Sigx =
1

N

[ N∑
i=1

|xi|
]
∼ Γ(α∗, N)

∣∣∣∣
α∗=α.N

(25)
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Now let us find the expected value of the Classical Robust Volatility Estimator ,Sigx as

E[Sigx] = E[Γ(α∗, N)

∣∣∣∣
α∗=N.α

]

=

∫ ∞
0

w.
(α∗)N

Γ(N)
.e−α

∗.w.wN−1dw

=
(α∗)N

Γ(N)
.

∫ ∞
0

e−α
∗.w.wNdw =

1

α

That is to say, the Expected value of the CRVE is given by,

E[Sigx] =
1

α
where α = β =

√
2.λ (26)

Therefore, we have found that the Expected value of the EVRVE is same as the Expected value
of the CRVE.

i.e. E[Sigux] = E[Sigx] =
1

α

Now let us define the Finite Sample Robust Volatility Ratio (FSRVR) defined as

FSRVR =

{
1
N

[∑N
i=1(u− |xi|)

1
N

[∑N
i=1|xi|

] }
(27)

Now let us find the Expected value of FSRVR, we get

E[FSRVR] = E

{
1
N

[∑N
i=1(u− |xi|)

1
N

[∑N
i=1|xi|

] }

We know that the numerator and denominator are independent of each other.13.We make use
of the independence property and write the Expected value of the FSRVR estimator as ,

E[FSRVR] = E

{
1

N

[ N∑
i=1

(u− |xi|)]

}
× E

{
1

1
N

[∑N
i=1|xi|

]} (28)

From the previous equation (23) and (24) we have,

E[Sigux] = E

{
1

N

[ N∑
i=1

(u− |xi|)
]}

=
1

α
(29)

From Appendix A, Claim 3, we have

E

{
1

1
N

[∑N
i=1|xi|

]} = (
N

N − 1
).α (30)

The Finite Sample Robust Volatility Ratio (FSRVR) will be unbiased if the Expected value

13 If X and Y are independent of each other, then E(XY ) = E(X).E( 1
Y )
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will be equal to 1. In order to check the unbiasedness property, let us find the expected value
of FSRVR. That is,

E[FSRVR] = E

{
1

N

[ N∑
i=1

(u− |xi|)]

}
× E

{
1

1
N

[∑N
i=1|xi|

]}
= (

1

α
)(

N

N − 1
).α = (

N

N − 1
)

That is to say, we have found that the Finite Sample Robust Volatility Ratio (FSRVR) is biased
insignificantly and is equal to ( N

N−1).

5.2.3. Modified Finite Sample Robust Volatility Ratio

In order to make the estimator unbiased , we introduce the Modified FSRVR Estimator defined
as

Modified FSRVR =

{
N − 1

N

}{
FSRVR

}

=

{
N − 1

N

}
×

{
1
N

[∑N
i=1(u− |xi|)

1
N

[∑N
i=1|xi|

] }

The Modified FSRVR Estimator will be unbiased if the Expected value of the estimator will be
equal to 1. That is to say,

E[Modified FSRVR] =

{
N − 1

N

}
E

{
FSRVR

}
=

{
N − 1

N

}{
N

N − 1

}
= 1.

Hence we have shown that the Modified Finite Sample Robust Volatility Ratio is unbiased.

6. Empirical Study

In this section, we check the empirical behavior of the proposed Robust Volatility Ratio by
using the daily {Open, High, Low, Close } prices of the global stock indices (S&P 500, FTSE,
CAC 40, DAX 30 and NIFTY). The sample period for S&P 500, CAC 40, DAX 30 and FTSE
100 is from 1996 to 2015 whereas for NIFTY Index it is between 1996 to 2015.The data are
collected from the Bloomberg. We can find the descriptive statistics of the global stock indices
in Table 1.
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Table 1 

Descriptive Statistics of the Global Stock Indices 

  S&P 500 CAC 40 DAX 30 FTSE 100 NIFTY 50 

Mean 0.0003 0.0001 0.0003 0.0001 0.0004 

Standard Error 0.0002 0.0002 0.0002 0.0002 0.0002 

Median 0.0006 0.0005 0.0010 0.0005 0.0009 

Standard Deviation 0.0119 0.0144 0.0149 0.0116 0.0159 

Kurtosis 8.3093 4.3769 4.2545 5.9128 6.7273 

Skewness -0.2450 -0.0242 -0.1276 -0.1645 -0.2199 

Range 0.2043 0.2007 0.1967 0.1865 0.2939 

Minimum -0.0947 -0.0947 -0.0887 -0.0927 -0.1305 

Maximum 0.1096 0.1059 0.1080 0.0938 0.1633 

Count 5538 5538 5538 5538 4966 

 

6.1. Hypothesis Testing:

We test the below hypothesis

H0: Actual Modified RVR = 1
H1: Actual Modified RVR 6= 1

The objective of our hypothesis is to check whether the Modified Robust Volatility Ratio(MRVR)
is unbiased or not in case of global stock indices. That is to say, we would like to check whether
the Extreme Value Robust Volatility Estimator(EVRVE) is unbiased relative to the Classical
Robust Volatility Estimator (CRVE) with regards to the global stock indices.

6.2. Interpretation:

If the t-test statistic is found to be significant and negative, we conclude that the EVRVE is
downward biased relative to the CRVE. That is to say MRVR<1 and it happens due to the
Random Walk effect.If the test statistic is found to be insignificant, then we conclude that
EVRVE is unbiased relative to the CRVE. That is to say, MRVR = 1 and it happens due to
the Brownian Motion.

6.3. Findings:

Based on the Empirical work on global stock indices from Table 2, we find the t-stat values
to be significant and negative for different k month periods {1,2,3,6,12,24,36,48,60,all}. We
find that the Modified Robust Volatility Ratio is significantly <1 for all the global indices.
The extent of the bias depends on which data set we consider. For example,for S&P 500 ,
the monthly modified robust volatility ratio is 0.732 with a t-statistic of -14.45 relative to 1.
Similarly, in the CAC 40, DAX 30, FTSE 100, NIFTY indices, the corresponding monthly
modified robust volatility ratio are 0.888, 0.843,0.738 and 0.840 respectively and these are all
significantly different from 1 which indicates that the EVRVE is downward biased relative to
the CRVE in case of the global stock indices and we interpret that it happens because of the
random walk effect.These findings are similar to the Rogers & Satchell estimator as mentioned
in [Maheswaran et al. (2011),Maheswaran & Kumar (2014)].
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Table 2 

Modified Robust Volatility Ratio when k-months are considered at a time. 

k-Months S&P 500 CAC 40 DAX 30 FTSE 100 NIFTY 50 

      

1 

0.732* 

(-14.45) 

0.888* 

(-5.78) 

0.843* 

(-7.96) 

0.738* 

(-14.20) 

0.840* 

(-9.49) 

2 

0.734* 

(-15.56) 

0.892* 

(-6.05) 

0.846* 

(-8.47) 

0.738* 

(-16.04) 

0.848* 

(-9.32) 

3 

0.735* 

(-16.38) 

0.893* 

(-6.02) 

0.847* 

(-8.44) 

0.737* 

(-16.59) 

0.851* 

(-9.01) 

6 

0.734* 

(-16.61) 

0.893* 

(-6.20) 

0.846* 

(-8.53) 

0.736* 

(-17.57) 

0.854* 

(-8.68) 

12 

0.731* 

(-16.91) 

0.892* 

(-6.24) 

0.846* 

(-8.66) 

0.736* 

(-16.46) 

0.857* 

(-8.76) 

24 

0.723* 

(-16.58) 

0.891* 

(-6.54) 

0.849* 

(-8.59) 

0.739* 

(-15.99) 

0.857* 

(-8.37) 

36 

0.718* 

(-17.34) 

0.890* 

(-6.02) 

0.851* 

(-8.49) 

0.741* 

(-16.68) 

0.858* 

(-8.19) 

48 

0.715* 

(-18.00) 

0.891* 

(-6.06) 

0.855* 

(-8.37) 

0.745* 

(-16.02) 

0.857* 

(-8.19) 

60 

0.714* 

(-17.11) 

0.892* 

(-5.76) 

0.860 

(-7.46) 

0.747* 

(-15.69) 

0.853* 

(-8.35) 

Full sample 

0.716* 

(-19.28) 

0.894* 

(-6.98) 

0.857* 

(-8.88) 

0.737* 

(-18.78) 

0.845* 

(-9.57) 

* means significance at 99 % of confidence level. The term in the paranthesis represents t-statistic.   

 

In Table 3 we conduct the similar empirical work on Nifty Stock Index without outliers. That
is we exclude the month of Oct 2012 which is an outlier and perform the similar analysis and
find that the t-stats are significant and negative and conclude that even after removing the
outliers , we get the similar result that Modified Robust Volatility Ratio ( for k-month equal
to 1, the value is 0.834 with t-stat value of -10.14) is significantly downward biased in case of
the Nifty Stock Index.

Table 3 
    Modified Robust Volatility Ratio when k-Months are considered at a time for Nifty Index excluding Oct-2012. 

k-Months 1 2 3 6 12 24 36 48 60 
Full 

sample 

           

NIFTY Outlier 
0.834* 

(-10.14) 

0.841* 

(-10.18) 

0.843* 

(-9.88) 

0.847* 

(-9.61) 

0.851* 

(-9.08) 

0.851* 

(-9.22) 

0.852* 

(-8.37) 

0.852* 

(-8.73) 

0.850* 

(-8.59) 

0.841* 

(-9.98) 

* means significance at 99 % of confidence level. The term in the parenthesis represents t-statistic.   

 

7. Conclusion

In this paper, we derive the Reflection principle of the standard Brownian motion and find
the joint probability of the terminal value and the running maximum at a fixed time with no
drift parameter. We then find the closed form solution for the joint probability of the running
maximum and the drawdown of the standard Brownian motion at a stochastic time τ which is
independent of the Brownian motion and is distributed exponentially with the parameter λ.

Based on our theoretical findings, we have proposed the volatility estimator that utilizes
the extreme values of asset prices based on absolute returns rather than the squared returns.
Absolute returns is considered to be more robust and efficient measure of dispersion than
standard deviation for distribution of returns which are not normal and for contaminated
data. In this paper, we have assumed the returns to follow exponential mixture of normal
distribution and mathematically proved that the proposed Extreme Value Robust Volatility
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Estimator (EVRVE) is found to be independent of the Classical Robust Volatility Estimator
(CRVE) with specific exponential distributions.

We have further proposed the Robust Volatility Ratio and mathematically proved that in
the population, the proposed Extreme Value Robust Volatility Estimator (EVRVE) is found to
be unbiased relative to the Classical Robust Volatility Estimator (CRVE). Also, we have put
forth the finite sample correction procedure to adjust for the bias in finite samples. We have
shown that the Modified Robust Volatility Ratio is unbiased. Our Empirical findings based on
the proposed model suggest that the global stock indices are generally found to be downward
biased which we interpret to be due to random walk effect.

Further research can be extended to know the independence and bias properties of this
newly proposed robust volatility estimator with the drift parameter. We can also find the
efficiency and the performance of this robust volatility estimator with regards to the volatility
estimators in the existing literature.
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9. Appendix A

Claim 1: The conditional characteristic function of xt is ϕxt(ζ | Yt = y) = e[−
1
2
ζ2y ].

Proof:
Let us suppose that the conditional daily returns xt are normally distributed with mean 0 and
variance Yt , i.e.

(xt | Yt) ∼ N(0, σ2 = Yt).

Also the unobserved stochastic volatility Yt ∼ Exp(λ).

We know that the characteristic function is given as ϕxt(ζ) = E[eiζxt ]. Therefore we have,
ϕxt(ζ | Yt = y) = E[eiζxt|Yt=y]

The Moment Generating Function is given as, E[eτζt ] = e(µτ+
1
2
σ2τ2) Now let us replace

τ = iζ, µ = 0 and σ2 = y .

Thus we get the conditional characteristic function of xt as

ϕxt(ζ | Yt = y) = E[eiζxt|Yt=y] = e[−
1
2
ζ2y]

Hence claim is proved.

Claim 2: The unconditional characteristic function of xt is ϕxt(ζ) = 1
1+( 1

2λ
)ζ2

Proof:

L.H.S = ϕxt(ζ)

= E[eiζxt ] = E
{
E[eiζxt ]

}
=

∫ ∞
0

λe−λy
{
ϕxt(ζ | Yt = y)

}
dy

=

∫ ∞
0

λe−λye[−
1
2
ζ2y ]dy (from claim 1)

=

∫ ∞
0

λe−(λ+
1
2
ζ2)ydy

= λ

∫ ∞
0

e−(λ+
1
2
ζ2)ydy

=
1

1 + ( 1
2λ

)ζ2
= R.H.S

Since L.H.S = R.H.S, the claim is proved.
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Claim 3 : E

{
1

1
N

[∑N
i=1|xi|

]} = ( N
N−1).α

Proof:

L.H.S = E

{
1

1
N

[∑N
i=1|xi|

]}

=

∫ ∞
0

1

w
.
(α∗)N

Γ(N)
.e−α

∗.w.wN−1dw

=
(α∗)N

Γ(N)
.

∫ ∞
0

e−α
∗.w.wN−2dw

=
(α∗)N

Γ(N)
.
Γ(N − 1)

(α∗)N−1

=
Γ(N − 1)

(N − 1).Γ(N − 1)
.

(α∗)N

(α∗)N−1

=
(α.N)N

(N − 1).(α.N)N − 1

=
α.N

N − 1

= (
N

N − 1
).α = R.H.S

Hence the claim is proved.
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