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INTRODUCTION 
Right from the 1970s policymakers have displayed an interest in formal models of 
the macro-economy with a view to using them for forecasting and policy purposes. 
Central banks, in particular, have felt the need to take recourse to such models as 
an aid in the formulation of monetary policy (and in recent years for maintaining 
financial stability). Typically an array of models is used to throw light on different 
aspects of policy, while judgment continues to play an important role in the actual 
policy decisions.  

Models  in the 1970s  : Basically large Simultaneous Equation Models (SEMs) , later 
followed by multiple time-series models, (MTSMs)  which in turn gradually gave 
way to VARs and Structural VARs in the 1990s. 

In the last decade or so an increasing number of central banks are actively engaged 
in the construction of DSGE (Dynamic Stochastic General Equilibrium) models  
(e.g. the Bank of England, the Federal Reserve Board, the European Central Bank, 
the IMF, Sveriges Riksbank etc.).  

Most of these banks are in the developed world, but it will not be long before EME 
central banks follow suit (see Tovar (2008). Or rather, they are doing so already.  
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ADVANTAGES 
DSGE proponents claim at least four major advantages for their model.  

1. Firstly, it is claimed that these models are solidly grounded in economic 
theory with secure micro-foundations.  

2. Related to the above, it is maintained that the parameters in the model are 
structural, and hence invariant to policy shocks. This by-passes the Lucas 
Critique and enables policy simulations aimed at judging the impacts of 
policy changes on key macroeconomic variables. This (it is felt) is a major 
advantage over more data-based traditional models  such as VAR or 
simultaneous equation models.  

3. DSGE models seem to record a forecasting performance at least 
comparable to other models (the Bayesian VAR is usually chosen as the 
benchmark in such comparisons).  

4. In spite of their elaborate structure, the results of simulations under 
alternative policy scenarios can be communicated to policymakers in an 
easily understood manner. 

 

•DSGE proponents claim at least four major advantages fo 
their model. 
•Firstly, it is claimed that these models are solidly groude 
in economic theory with secure micro-foundations.
•Related to the above, it is maintained that the parametes 
in the model are structural, and hence invariant to pocy 
shocks. This by-passes the Lucas Critique and enables ocy 
simulations aimed at judging the impacts of policy cag  
on key macroeconomic variables. This (it is felt)  is a ajo 
advantage over more data-based traditional models  sc 
as VAR or simultaneous equation models. 
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Several other advantages are also claimed on behalf of the models viz that they 
bring out the key role of expectations and (being of a general equilibrium nature ) 
can help the policy maker by explicitly highlighting the macro-economic scenarios 
in response to various contemplated policy outcomes. Additionally, as we discuss 
later, the models in spite of being strongly tied to theory, can be “taken to the data” 
(to use a phrase which has become standard in this literature) in a meaningful way. 
A major feature of these models is that their theoretical underpinnings lie in what 
has now come to be called as the  New Consensus Macro-economics (NCM) which 
established itself in the 1980s as the weltanschauung of the bulk of the 
macroeconomics profession.  
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BASIC STRUCTURE  
The essential ingredients of a typical DSGE model are the following 

•  (i) a collection of rational optimizing economic agents including households, final goods 
producers, intermediate goods producers, labour, government etc., who maximize their 
separate expected utility functions subject to their respective budget and resource 
constraints 

•  (ii) the optimization process leads to non-linear Euler equations which need to be solved 
by special methods such as those given by Blanchard and Kahn (1980), Sims (2002), Uhlig 
(1999) etc  

• (iii) the model is then log-linearized around its steady state and  

• (iv) the system is driven by a number of stochastic shocks, such as shocks to technology, 
to leisure preference, to government policy rules etc.  

These four features are shared by all DSGE models ranging from the simpler DSGE models 
like the Real Business cycle model of Campbell (1994 ), Hansen (1985) etc. to the medium scale 
models of Christiano et al (2007), Sborodone et al (2010) etc. to the large scale models of Smets 
and Wouters (2003, 2004), Gali et al (2012), Harrison et al (2005) 
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STATE-SPACE REPRESENTATION 
A surprisingly rich class of  DSGE models, irrespective of their scope, can be 
expressed in a stochastic linear general equilibrium framework and  put in the 
following state space format  ൤࢚ࡱ(࢚ࢌା૚)࢙࢚ା૚ ൨ = ۯ	 ൤࢚࢙࢚ࢌ൨ +     (1)                                                                                         ࢚ࣕࢽ

where we  introduce a distinction between those variables which are predetermined 
at time t (which includes both exogenous and some endogenous variables) which are 
termed state variables (denoted by ࢙࢚ ) and those endogenous variables not so 
predetermined which are termed  forward looking, “control”  or “jump” variables 
(denoted by ࢚ࢌ).   
This system can be solved provided the conditions mentioned in Blanchard and 
Kahn (1980), are satisfied.  For our further analysis we assume that these conditions 
are satisfied and write (1) as:   ࢚ࢌ = ડ࢙࢚                                                                                                                  (2) ࢙࢚ = ૚࢙࢚ି૚۾ +                                                                                                (3)		૛࢚ࣕ۾
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where  ࢚ࣕ is a vector of shocks1 and , ,૚۾  ડ are matrices of appropriate	܌ܖ܉૛۾
dimensions.  

We stack the vectors ൤࢚࢙࢚ࢌ൨ into a single vector say ࢚ࢄ and rewrite (2)-(3) as:  ࢚ࢄ = ૚ି࢚ࢄ۱ + ۰࢚ࣕ                                                                                            (4) 

where  ۱ = ቂ૙ ડ۾૙ ࡼ ቃ and ۰ = ൤ડۿۿ ൨	 
It is tempting to proceed to a direct estimation of the parameters of the model (4). 
However this fails because most DSGE models suffer from what is called as “the 
stochastic singularity” problem (see Canova and Sala (2009)). 
  

                                                            
1 Some elements of ࢚ࣕ could be zero.  
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STOCHASTIC SINGULARITY 
The model is ‘stochastically singular’ if the spectral density of observed variables ࢌࢌࡿ(λ) is rank-deficient at almost all frequencies. 
 
When does it arise?  
 

1. Number of shocks is less than or equal to number of observables. Theory 
underpins only few truly structural driving forces. At business cycle frequency, 
real economic variables are driven by few factors  

 
2. A combination of elements in Y is perfectly correlated. Macroeconomic and 

financial data are never perfectly correlated. But Macroeconomic data feature 
robust regularities and 

co-movement. Real and nominal cyclical comovement is very strong 
 
Consequences :  

1. It precludes use of likelihood-based methods and Kalman filter.  Bayesian-
likelihood methods are of no help here, of course 
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Overcoming the Singularity Problem :  

1. Calibration : In the older generation of DSGE models, calibration was the generally 
accepted method of analysis (see e.g. Gregory and Smith (1991), Christiano and 
Eichenbaum (1992)  etc.).2 Calibration proceeds by attributing certain fixed values to the 
structural parameters based on economic theory, intuition or more likely previous micro-
econometric studies .  The model is subsequently simulated using these parameters  with 
a series of artificial shocks. Statistical features of the simulated outcomes (such as 
unconditional moments or the spectrum) are compared  with those of actual data. 
Appropriate distance measures between the simulated and actual data statistics are 
computed   to arrive at some judgements about the adequacy of the calibrated values of 
the parameters (see e.g.  Watson (1993),  DeJong et al (1996) etc.). 

2. Time-Varying Parameters : This method (usually associated with Smets and Wouters 
(2003, 2004)) introduces time variation in some of the parameters by subjecting them to 
stochastic shocks. In practice the number of parameters subject to the shock must be 
sufficient to overcome the deficit in the number of shocks. Of course as to which 
parameters are to be treated as fixed and which subjected to shocks is to be decided by 
the analyst based on previous studies or dialogue with policy-makers. In effect this 
procedure  implies that some of the parameters are being treated as “state variables”. 

                                                            
2 This of course by-passes the issue of stochastic singularity altogether, since no estimation is involved. 
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3. Dynamic Measurement Errors : This method (see Ireland (2004) for a full discussion) 
overcomes the stochastic singularity problem by introducing “measurement errors” in 
each of the observation equations in (2). These errors are presumed to follow a VAR 
model so that the structure (2) is modified to:  ࢚ࢌ = ડ࢙࢚ + ࢛࢚                                                                                                                       (5) 

The measurement error process ࢛࢚ follows an AR(1) process i.e.:  ࢛࢚ = ૚࢛࢚ି૚ۻ +  (6)                                                                                                                ࢚ࢋ

It is assumed that (i) ࡱ൫࢚ࣕࢋᇱ࢚൯ = ૙   (ii) ࢚ࢋ	~	ࡺ(૙,  (܄
Various types of assumptions have been made on the matrices ۻ૚ and V.  

(i) Altug (1989) and Sargent (1989) assume ۻ૚ = ૙ while V is assumed to be diagonal. 
Thus the measurement errors are uncorrelated and serially uncorrelated 

(ii) McGrattan et al (1997) imposes a diagonal structure on both ࡹ૚ and V. Thus the 
measurement errors are autoregressive but uncorrelated. 

(iii) Finally Ireland (2004) allows the measurement errors to be correlated as well as 
autoregressive i.e. the matrices ۻ૚ and V are not restricted to be diagonal. But the 
matrix ۻ૚ is restricted to have all its eigenvalues within the unit circle, while  V is 
constrained to be positive definite.  
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4. Reducing the Dimensionality of the Observable vector space : The approaches considered 
above (except calibration) overcome the “stochastic singularity” problem by increasing 
the number of structural shocks to match (or exceed the number of observable variables). 
An alternative approach would be to reduce the dimension of the space spanned by the 
observable vector ࢚ࢌ to the number of structural shocks. A naïve way to do this (which 
was adopted in some earlier DSGE versions) would be to restrict the set of observable 
variables, till equality between the number of endogenous variables and structural shocks 
is achieved. As pointed out by Canova et al (2014) this approach can complicate the 
application of full information estimation methods by leading to a highly nonlinear 
likelihood function, forcing the analyst to fall back upon limited information estimation 
methods.  

Andrews and Mikusheva (2011), Morris (2014) etc. . Andrle  ( 2010) take an alternative 
approach using the DPCA (dynamic principle component analysis) of Brillinger (1981). In this 
approach the number of principle components considered is less than the number of shocks. 
The model is rotated into the subspace of the principle components space and the transformed 
model is estimated via Whittle’s (1962) penalized likelihood method.  
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5.Core/Non-Core Distinction : From the point of view of policy applications, the approach 
taken by the Bank of England in developing its version of a DSGE model presents several 
attractive features. This model developed fully in Harrison et al (2005) and referred to as the 
Bank of England Quarterly Model (BEQM) distinguishes three aspects of the model viz. (i) the 
core model (CM) (ii) the data adjusted model (DAM) and (iii) the operational model (OM). 
Often, the latter two stages are referred to as the “non-core component” of the model.  

The CM is a tight theoretical model solidly grounded in economic theory but does incorporate 
many of the institutional features and policy constraints. The DAM serves three purposes : (i) 
it relates the core variables to their observable counterparts (ii) it includes features such as 
credit market imperfections, informal sector, housing prices, agricultural sector etc. which 
could make the core model too complex to be tractable and (iii) it includes some relations and 
stylized facts for which the theoretical underpinnings are unclear (e.g. impact of monetary 
policy on the yield curve, factors determining the foreign exchange rate premium etc.). 

The OM is the model used for actual policy purposes and incorporates  extraneous information 
useful for policy but not amenable to formal modeling such as policymakers’ judgments, 
consumer confidence, business surveys etc. (see Pagan (2005)). Such aspects can be modeled 
either by introducing specific variables (if the extraneous information can be put on a scale e.g. 
consumer and business confidence) or if this cannot be done (as, for example, with 
policymakers’ or analysts’ judgments) then by introducing Bayesian priors on some of the 
parameters in the model.  

As to how the core non-core approach overcomes the stochastic singularity problem, this is 
shown in my recent working paper (Nachane (2016)  in the context  of a simple real business 
cycle model.   
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ESTIMATION OF DSGE MODELS 
Basically, four estimation approaches are deployed in the DSGE context viz: 

(i) Maximum likelihood  

(ii) Generalized Method of Moments 

(iii) Simulated Method of Moments 

(iv) Indirect Inference Method 
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MAXIMUM LIKELIHOOD METHOD  
While the logic of this procedure is straightforward, (and the maximum likelihood estimators 
are additionally consistent and asymptotically normal),  the direct application of the method 
rarely succeeds in practice. Optimization in the parameter space can often fail to converge if 
the number of parameters is large.. The optimization hyper-surface can often be flat (and 
hence non-informative) about certain parameters which  means that the maximization 
algorithm can oscillate without convergence indefinitely (see Canova and Sala (2009)). 

Since a pure maximum likelihood strategy can lead to computational difficulties, a mixed 
estimation strategy is often resorted to (see De Jong et al (2000), Schorfheide (2000), Ruge-
Murcia (2007) etc.). Here it is assumed that the analyst has certain prior information about a 
subset  ࢋࣂ		of the parameter vector θ, based on economic theory, previous micro-studies, or on 
certain stylized empirical regularities in the data.  The prior information can assume several 
forms but for analytical convenience, it is presumed that this information can be summarized 
as probability density functions referred to simply as priors. The set of remaining parameters 
about which we have no particular information can be termed as ࢙ࣂ	, and these are assigned 
“non-informative” or “diffuse” priors which are essentially flat or near flat distributions ( see 
De Jong et al (2000) ). By Bayes’ theorem, it is well-known that the posterior distribution is 
related to the prior distributions via the following:  ࡼ൫(ࣂ|࢞૚ ൯(ࢀ࢞… ∝ ൫(࢞૚࢒  (11)																																																																																									(࢙ࣂ)ࡼ൯(ࣂ|ࢀ࢞…
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where (࢙ࣂ)ࡼ is the “diffuse” prior on ࢒ ,࢙ࣂ൫(࢞૚  ൯ is the sample likelihood3 conditioned(ࣂ|ࢀ࢞…
on the entire vector ࣂ , and ࡼ൫(ࣂ|࢞૚  conditioned on , ࣂ ൯ is the posterior distribution of(ࢀ࢞…
the observed sample. The normalizing term in the denominator of the right hand side of (11) is 
by Bayes theorem ࡼ(࢞૚ the unconditional joint density of the data (࢞૚ (ࢀ࢞…  which (ࢀ࢞…
would be unknown in most applications. 	
The posterior distribution is analytically intractable in most cases and has to be tackled by 
numerical Monte Carlo simulation.  

Monte Carlo Simulation  

In Monte Carlo simulation an  i.i.d.  sample is generated say {ࣂ૚, ,૛ࣂ …… . .  which serves  	,{ࢀࣂ
as the basis for the  inference problem at hand (see Hammersley and Handscomb (1964) for an 
authoritative discussion).  Four  alternative methods are available for generating the Monte 
Carlo sample in the Bayesian posterior estimation problem viz:  

(i) Acceptance/Rejection Sampling (Press et al (1992)) 
(ii) Importance Sampling (Geweke (1989, 1997), Richard and Zhang (2007) etc.)  
(iii) Metropolis –Hastings Algorithm (Metropolis et al (1953), Hastings (1970), Gelfand and 

Smith (1990), Chib and Greenberg (1995) etc.) and 
(iv)  Gibbs Sampling (Lange (1999), Tierney (1994) etc.) .  

                                                            
3 We are using ݈൫(ݔଵ ଵݔ)൫ܮ ൯ to denote the likelihood, since(ࣂ|்ݔ…   .൯ has been used to denote the log-likelihood in (14) earlier(ࣂ|்ݔ…
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Markov Chain Monte Carlo Simulation:  The induction of Markov Chains into  Monte Carlo 
simulation following the seminal papers of Metropolis et al (1953) and Hastings (1970)  gave a 
tremendous fillip to the entire field.  Essentially, the fundamental breakthrough was the 
realization that under certain fairly general conditions, a Markov Chain would converge 
asymptotically to any distribution of interest. MCMC (Markov Chain Monte Carlo simulation) 
has proved extremely useful in Bayesian inference but it is more generally applicable to 
analyze any complex function which is analytically intractable. Basically there are two strands 
of MCMC which have proved most fruitful in applications viz. the Metropolis- Hastings (MH) 
algorithm and Gibbs Sampling. It has been the experience that these methods yield more 
efficient results than earlier simulation methods ( such as acceptance-rejection sampling, 
importance sampling etc.). The basic concepts of Markov chain theory underpinning these 
methods can be found in standard texts such as  Doob (1953), Norris (1997), Rosenblatt (1971) 
etc.  

Three issues are involved in these algorithms (i) to specify iterations in such a way that the 
associated transition kernel generates a reversible Markov chain whose equilibrium distribution 
is the target distribution of interest (ii) to ensure that the algorithm actually converges to the 
target distribution with successive draws from the candidate distribution (iii) to ensure that 
the convergence is fairly rapid. 

Both the algorithms (M_H and Gibbs)  try to address these three issues.  
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EVALUATION OF DSGE MODELS 
Before putting any identified and estimated model to practical uses in forecasting or policy 
analysis, the model has to be subjected to rigorous evaluation procedures. One may distinguish 
three stages in the evaluation procedures of DSGE models (i) calibration (ii) sensitivity analysis 
and (iii) DSGE-VARs. We discuss each of these briefly below 

Calibration  

The earliest evaluation procedures suggested for DSGE models are based on calibration. As we 
have discussed above calibration imputes values to the parameters of the DSGE model based 
on estimates from micro-evidence, or long-run averages or from a priori theoretical 
considerations (as in the case of the rate of time-discounting). In early studies (e.g. Kydland 
and Prescott (1982), Mehra and Prescott (1985) etc.), the population moments ࣂ	(of interest to 
the analyst) implied by these parameters and the theoretical model, were matched with the 
historical moments ࢀࣂ	thrown up by the data (T observations) . Since the sampling distribution 
of these historical moments are usually not known (even asymptotically), this procedure lacks 
statistical foundations. Gregory and Smith (1991) improve on this procedure by simulating 
from the DSGE model repeatedly and obtaining estimates ࡺࣂ (N the length of the simulations). 
The historical moment ࢀࣂ is used as a critical value to find the size of the test involved in 
comparing  ࡺࣂ with ࢀࣂ. Thus if ࢀࣂ lies within the 95% confidence interval of ࡺࣂ, we are able to 
accept the DSGE model with a high degree of confidence. 
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Sensitivity Analysis :  

The drawback of the calibration procedure is that it attributes the difference between the 
model results and the empirical observations to sampling errors, thus presuming that the 
model is true and neglecting parameter uncertainty. This deficiency is sought to be addressed 
by the sensitivity approaches of Kwan (1991) and Canova (1995). The latter approach is 
described heuristically here. Let the empirical data to be modeled be described by the vector ࢚ࢅ and the corresponding model vector by the vector ࢚ࢄ and assume that the model is 
described by ࢚ࢄ = ,࢚ࢆ)ࢌ  is a vector of exogenous variables (including shocks) and ࢚ࢆ where (ࢼ
β is a vector of parameters. The form of f is assumed to be known as also the probability 
distribution η(࢚ࢆ) of the exogenous variables. A prior ࣊(ࢼ) is imposed on the parameters and 
simulations are performed by drawing with replacement iid vectors ࢼ from ࣊(ࢼ) and ࢚ࢆ 
vectors from η(࢚ࢆ).  
Suppose interest attaches to the estimation of a certain moment  (࢚ࢄ)ࣆ of the simulated data 
(which will be subsequently matched with the corresponding moment of the actual data (࢚ࢅ)ࣆ 
to get an idea of the model fit). This requires knowledge of the predictive density દ(࢚ࢄ) of the 
simulated data. As shown by Canova (1995), this can be obtained by solving the model ࢚ࢄ = ,࢚ࢆ)ࢌ  .(using the M-H algorithm) ࢼ		ࢊ࢔ࢇ	࢚ࢆ for a sufficient number of replications of (ࢼ
If the proportion of the simulated values (࢚ࢄ)ࣆ lying within a one standard deviation band of (࢚ࢅ)ࣆ is small or if (࢚ࢅ)ࣆ lies in an extreme percentile of  દ(࢚ࢄ), then the procedure points to 
model non-congruence with the data. A notable shortcoming of the Canova procedure is its 
asymmetric treatment of uncertainty, arising from parameter uncertainty in the model and 
from sampling error in the data (see De Jong et al (1996)). 
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DSGE-VAR: 

In recent years a particular approach based on Bayesian methods is becoming increasingly 
popular as a method for evaluation of DSGE models. This method seems to have been 
introduced by De Jong et al (1996), and later  developed and refined in a series of papers by 
Del Negro and Schorfheide (2004, 2006), and Del Negro et al (2007). It is well known in the 
literature that a DSGE model can be associated with a VECM (see e.g. Franchi and Juselius 
(2007)) in which the DSGE parameters impose cross-coefficient restrictions on the VECM 
parameters. Let ࣂ	 denote the parameter vector of the DSGE,   ઴(ી) and ઱࢛(ࣂ) the vector of 
the   coefficients and  the var-cov matrix of the innovations of the associated reduced form 
VECM .  

We begin with a prior distribution (ࣂ)࢖ for the DSGE parameters centred at the estimated 
values ࣂ∗of the DSGE model.  This leads to an associated  prior distribution ࢖(	઴, ઱࢛) for the 
VECM parameters centred at ઴(ࣂ∗), ઱࢛(ࣂ∗). The precision of the prior ࢖(	઴, ઱࢛) is controlled 
by a hyper-parameter λ ranging from λ=0 to λ=∞. The value λ=0 correspond to the case where 
the VECM is completely unrestricted and the value λ=∞ corresponds to the case where all the 
prior mass is concentrated at the values  ઴(ࣂ∗), ઱࢛(ࣂ∗).  
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Note : The value λ=0 correspond to the case where the VECM is completely unrestricted and 
the value λ=∞ corresponds to the case where all the prior mass is concentrated at the values  ઴(ࣂ∗), ઱࢛(ࣂ∗). 
Let Y  denote the (Txn) matrix of T observations on n endogenous variables . we derive the 
conditional pdf’s of ࢖(ࢅ|ી) and (ૃ|ࢅ)࢖ sequentially by simulation (see Weinberg and 
Kyprianou (2005)). Once (ૃ|ࢅ)࢖ is known, we can specify a grid of possible values for λ  viz. ઩ = ൛ࣅ૚, ,૛ࣅ … . . ૚ࣅ ൟ withࢗࣅ = ૙	ࢊ࢔ࢇ	ࢗࣅ very large (as mentioned earlier this two extreme 
values correspond respectively to the unrestricted VECM and the VECM with the  DSGE 
parameter restrictions. Let (ૃ|ࢅ)࢖ attain its maximum over the grid ઩ at	ࣅ෠	 and consider the 
likelihood ratio  ࢖൫ࢅหૃୀ෠ૃ൯࢖൫ࢅหૃୀࢗࣅ൯                                                                                                                           (7) 

A large value of ࣅ෠  and a value of the likelihood ratio (7) close to 1 is taken as evidence in favour 
of the DSGE model. Comparison of the impulse responses of DSGE-VECM(∞) with those of 
DSGE-VECM(ࣅ෠) can yield useful insights into the sources of the model misspecification( see 
Del Negro et al (2007)).  
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MAIN CRITICISMS 
Economic Theory Critique :  

(1) Rational Expectations. 
(2) Representative Agent 
(3) Complete,and Efficient Markets 
(4) Stability of General Equilibrium 
(5) Transversality Condition  
(6) Ergodic Underatinty 

Econometric Critique :  

(1) Aggregation Problem 
(2) Log-linearize and trivialize 
(3) Inflating the “fit” by introducing ad-hoc features 
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BEYOND DSGE MODELS 
Two such approaches are emerging in the literature. The first is the ECONOPHYSICS 
literature which shifts the focus away from individual equilibria to systems equilibria and 
wherein evolving micro-dynamic interactions are consistent with macro equilibrium. Micro-
foundations are abandoned in favour of dimensional analysis and the use of traditional 
topological methods are replaced by the methods of statistical physics (see Farmer et al (1988), 
Aoki and Yoshikawa (2006) and Colander (2006)).  

A second, and perhaps more promising approach is the ACE (AGENT-BASED 
COMPUTATIONAL ECONOMICS) put forth by Epstein and Axtell (1996), Tesfatsion and 
Judd (2006),  LeBaron and Tesfatsion (2008). ACE modeling allows for a variegated taxonomy 
of agents including a spectrum of cognitive features ranging from passive cognition to the most 
sophisticated cognitive abilities. A second important aspect of ACE modeling is that it 
examines the evolution of macro dynamics as the number of interacting agents increases and 
as their interactions become more complex. The method relies heavily on experimental designs 
to make inferences about the behavior of different agents. The interactions are determined by 
the agents’ internal structures, information sets, beliefs and cognitive abilities. Agent behavior 
is not restrained by artificial external boundary conditions such as homogeneity, stability  or 
transversality. Using the so-called Zipf distribution, Axtell (2001) reports a model with millions 
of interacting agents (see also Adamic (2011)) 
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Nevertheless, neither of the above two approaches really validate the data in manner that 
could satisfy the rigorous demands of our profession. This deficiency is important and will 
possibly not be  long in getting satisfactorily resolved. Meanwhile should we persist with  the 
DSGE approach in spite of its problematic foundations?  Solow (2010) in his testimony before 
the U.S. House of Representatives Committee on Science and Technology severely indicts the 
DSGE business “ The point I am making is that the DSGE models have nothing useful to say 
about anti-recession policy because they have built into its essentially implausible assumptions 
the “conclusion” that there is nothing for macroeconomic policy to do. ….There are other 
traditions with better ways to do macroeconomics..”. Similarly talking about the Bank of 
England’s disillusionment with DSGE models in the aftermath of the global crisis, Buiter 
(2009) refers to “the chaotic re-education” at the institution.  

This “re-education” could usefully incorporate three fundamental considerations viz. (i) lesser 
reliance on pre-selected formal models and greater scope for exploratory data analysis (ii) 
robustness across model specifications in policy choices and (iii) ethical responsibility of 
economic researchers.  

One  approach which is less formal (than DSGE models) and which gives greater scope for 
exploratory data analysis is the CVAR (co-integrated VAR) approach developed by Johansen 
(1996)  and elaborated in Juselius (2006) and Hoover et al (2008) . It is shown in Juselius and 
Franchi (2007) that the assumptions underlying a DSGE model can be translated into testable 
hypotheses in a CVAR  framework. A second approach by Del Negro and Schorfheide (2004) 
(DSGE-BVAR) seems even more promising. Here the estimated parameters from a DSGE 
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model are used as priors in an associated Bayesian VAR. A hyper-parameter  λ controls the 
tightness with which the priors are imposed. These priors are fed into the likelihood function 
of the VAR to obtain the posterior distribution of the parameters. The shape of the posterior 
distribution for λ can help us adjudge the suitability of the tested parameters of the underlying 
DSGE (from the point of view of goodness-of-fit as well as model complexity). While neither of 
the above two approaches can claim to be perfect, they have the merit of going beyond the 
narrow DSGE view and allowing greater room for the data to speak.  

The issue of robustness across model specifications is a largely neglected issue in the literature. 
In the real world policymakers are uncertain about the model(s) that they use. This 
uncertainty has several dimensions viz. parameter uncertainty, uncertainty about the 
persistence of shocks, uncertainty about the data quality etc. In such a situation what is 
required is a method to study the sources of model errors. The Model Error Modeling literature  
from control theory can be useful here (see Ljung (1999)). Introducing  robustness 
considerations in economics has been studied from a different viewpoint in McCallum (1988) 
Hansen and Sargent (2001), Onatski and Stock (2002) etc. These ideas however have not yet 
filtered down to real-world policy making.  
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CONCLUSION 
Finally, the recent global crisis has brought to the fore the ethical responsibility of the 
economics profession. As the financial wizards went into top gear with their innovations in the 
build-up to the crisis, the regulators failed to get adequate and timely  warning about the 
potential for systemic damage in these developments, from macroeconomists in general. Are 
we to believe that the leading lights of our profession were simply ignorant about the dangers 
posed by an over-leveraged, over-securitized and skewedly-incentivized financial sector, or as 
is more likely they simply looked the other way ?  Either view does not redound to the 
profession’s credit. Perhaps economists should take their ethical responsibilities far more 
seriously than they do now and issue timely warnings to policymakers and the general public 
of developments which (in their opinion) are fraught with serious consequences for society at 
large.  

Solow’s (1997) characterization of academic economists as “the overeducated in search of the 
unknowable” is apt in the current context. Economists would be more usefully employed if 
instead of pursuing the Holy Grail of the true but unknown and  formally perfect model, they 
set up a more modest agenda of studying the knowable. The lines of thinking noted briefly in 
the previous paragraphs (viz. the, ACE,  CVAR and DSGE-BVAR models) represent precisely 
this line of thinking. One could not agree more with Colander ( (2000), p. 131) when he sets up 
an agenda for those he terms the  New Millenium economists as “ .. search for patterns in data, 
try to find temporary models that fit the patterns, and study the changing nature of those 
patterns as institutions change”.  

 


