PROPERTY RIGHTS, TECHNOLOGICAL INNOVATION AND ECONOMIC GROWTH: A CROSS COUNTRY ANALYSIS

Siddhartha Chattopadhyay

Department of HSS, IIT Kharagpur

Muhammed Najeeb K. K.

Department of HSS, IIT Kharagpur

Anwesha Aditya

Department of HSS, IIT Kharagpur

IIT KGP

December 12, 2019

1 / 37

- Long-run (per capita) growth is determined by rate of growth of technology
- Technology Growth is Endogenous
 - Romer (1990): technological growth takes place due to efforts by researchers and entrepreneurs responding to economic incentives
 - infrastructure, institutions and Property Rights play crucial role determining economic growth through technological innovation

- Literature identified nonlinear relationship among Intellectual Property Rights (IRP), Total Factor Productivity (TFP) and Economic Growth: Impact of IPR and TFP on growth rate of rich country is different than that of poor countries
 - Thompson and Rushing (1996 & 1999): IPR improves TFP and promotes growth for rich countries
 - Falvey et. al. (2006): IPR has positive impact on growth for rich and poor countries and no impact on growth for middle income countries
 - Haydaroğlu (2015): IPR promotes growth for EU and OECD countries
 - **Park and Ginrate (1997):** IPR improves research capital; a measure of TFP but has no impact on growth

- This paper identifies probable sources leading to the nonlinear relationship among IPR, TFP and Growth
 - we have used Romer (1987, 1990a, 1990b) to identify probable sources of nonlinearity
- Identifying appropriate sources of nonlinearity and accordingly incorporating them into the estimation process is important to avoid omitted variable bias
 - we have used endogenous regime switching model of Maddala and Nelson (1975) → producing unbiased estimates by incorporating different sources of nonlinearity in an otherwise Barro (1991) type cross sectional growth model.

- Romer (1990): Economic Incentives Leading to Growth through Technological Innovation
 - Increasing Return to Scale and Innovation: Technology of Ideas associated with IRS → Falling AC and MC curve (MC<AC) ⇒ Marginal Cost pricing under perfectly competition is not possible
 - Monopolistic Competition: Labour and Capital paid less than their marginal products → profit to entrepreneurs → providing fund for R&D
 - Property Rights and Patent: gives monopoly Power to researchers and entrepreneurs to cover the initial fixed cost incurred → inducing R&D activities leading to economic growth by technological innovation.
- Helpman (1992): Stringent IPR increases (decreases) welfare for North (South) by encouraging (discouraging) innovation (imitation)

An Application

• Suppose, the unobserved ambience of undertaking R&D activities by researchers and entrepreneurs of country *i* depends on,

$$\gamma' Z_i - \epsilon_i$$

- Z_i : observed country specific factors (infrastructure, institutions, IPR)
- γ : corresponding weights
- ϵ_i : unobserved country specific factors
- Define an indicator variable l_i such that, it takes a value 1 for innovation driven rich countries and 0 otherwise

$$egin{array}{rcl} I_i &=& 1 ext{ when } \gamma^{'}Z_i - arepsilon_i \geq 0 \ &=& 0 ext{ when } \gamma^{'}Z_i - arepsilon_i < 0 \end{array}$$

An Application

• Corresponding growth equations for countries belonging to Group 1: innovation driven rich countries with better ambience of undertaking R&D activities and Group 2: rest of the poor non-innovation driven countries

$$g_{1i}=eta_{1}^{'}X_{1i}+u_{1i}, ext{ when } I_{i}=1$$
 (1)

$$g_{2i} = \beta_2' X_{2i} + u_{2i}$$
, when $I_i = 0$ (2)

$$(u_{1i}, u_{2i}, \epsilon_i) \sim \mathcal{N}(0, \Sigma)$$
, $\Sigma = \begin{pmatrix} \sigma_1^2 & \sigma_{12} & \sigma_{1\epsilon} \\ & \sigma_2^2 & \sigma_{2\epsilon} \\ & & 1 \end{pmatrix}$

An Application

- g_{1i} and g_{2i}: average annual growth for countries belonging to Group 1 and Group 2
- X_{1i} and X_{2i}: control variables influencing growth rate for countries belonging to Group 1 and Group 2 (Barro, 1991)
- u_{1i} and u_{2i} : error term but not necessarily random

An Application

• Conditional expectation of equation (1) and (2) gives,

$$E(g_{1i}|X_{1i}, I_i = 1) = \beta'_1 X_{1i} + E(u_{1i}|\gamma' Z_i \ge \epsilon_i) = \beta'_1 X_{1i} - \sigma_{1\epsilon} W_{1i}$$
(3)

$$E(g_{2i}|X_{2i}, I_{i} = 0) = \beta_{2}'X_{2i} + E(u_{2i}|\gamma'Z_{i} < \epsilon_{i})$$

= $\beta_{2}'X_{2i} + \sigma_{2\epsilon}W_{2i}$ (4)

$$W_{1i}=rac{\phi_i}{\Phi_i}$$
, $W_{2i}=rac{\phi_i}{1-\Phi_i}$

• Φ_i is the distribution function of standard normal and ϕ_i is the density function of standard normal evaluated at $\gamma' Z_i$

An Application

• Equation (3) and (4) gives,

$$g_{1i} = \beta'_{1} X_{i} - \sigma_{1\epsilon} W_{1i} + \eta_{1i}, E(\eta_{1i}) = 0$$
(5)

$$g_{2i} = \beta_2' X_i + \sigma_{2\epsilon} W_{2i} + \eta_{2i}, E(\eta_{2i}) = 0$$
(6)

•
$$\sigma_{1\epsilon} = \mathsf{cov}\left(\mathit{u}_{1i}, \epsilon_{i}
ight)$$
, $\sigma_{2\epsilon} = \mathsf{cov}\left(\mathit{u}_{2i}, \epsilon_{i}
ight)$

Chattopadhyay, KK & Ghosh (IIT KGP) PROPERTY RIGHTS, INNOVATION, GROWTH December 12, 2019

TFP, Growth and Omitted Variable Bias

• Comparing equation (1) and (2) with equation (5) and (6)

$$u_{1i} = -\sigma_{1\epsilon} W_{1i} + \eta_{1i}$$
$$u_{2i} = \sigma_{2\epsilon} W_{2i} + \eta_{2i}$$

 Technological innovation induced by R&D activities affecting growth if

$$\sigma_{1\epsilon} \neq 0$$
 and $\sigma_{2\epsilon} \neq 0$

11 / 37

• Omitted variable bias: $\sigma_{1\epsilon} \neq 0$ and $\sigma_{2\epsilon} \neq 0$ but we estimate equation (1) and (2) instead of equation equation (5) and (6)

Three Sources of Nonlinearity

- $\sigma_{1\epsilon} \neq \sigma_{2\epsilon} \Rightarrow$ impact of TFP on growth is nonlinear
- $\beta_1 \neq \beta_2 \Rightarrow$ impact of X_1 and X_2 on growth is nonlinear
- W_1 and W_2 are nonlinear function of infrastructure, institutions and IPR (captured in Z) through ϕ and Φ

The Endogenous Regime Switching Model (Maddala and Nelson, 1975) Full Sample Estimation

• Can we do a full sample estimation instead of estimating equation (5) and (6) separately?

$$E(g_{i}) = \Phi_{i}E(g_{1i}|X_{1i}, I_{i} = 1) + (1 - \Phi_{i})E(g_{2i}|X_{2i}, I_{i} = 0)$$

$$g_{i} = \beta_{1}'(\Phi_{i}X_{1i}) + \beta_{2}'[(1 - \Phi_{i})X_{2i}] + (\sigma_{2\epsilon} - \sigma_{1\epsilon})\phi_{i} + \omega_{i}$$

$$E(\omega_{i}) = 0$$
(7)

13 / 37

The Endogenous Regime Switching Model (Maddala and Nelson, 1975) Full Sample Estimation

- Equation (7) can capture differential impact of X_{1i} and X_{2i} on growth rate through $\beta_1 \neq \beta_2$
- Equation (7) cannot capture differential impact of technological innovation of economic growth as it cannot identify $\sigma_{2\epsilon}$ and $\sigma_{1\epsilon}$ separately
 - we need separate estimation of equation (5) and (6)

An Application

- Estimation of equation (5) and (6) involves 2 steps
- **9 Estimate a Probit model:** gives $\widehat{\gamma}$, $\widehat{\phi}_i$, $\widehat{\Phi}_i o \widehat{W}_{1i}$ and \widehat{W}_{2i}
- Set imate equation (5) and (6) separately by OLS using \widehat{W}_{1i} and \widehat{W}_{2i}

• There are 2 Issues:

- We need prior classification of countries belonging to Group 1 and Group 2⇒ exogenous sample separation
- We need to identify Z_i representing infrastructure, institutions and IPR

Exogenous Sample Separation for 2007-2017

- Identify countries belonging to Group 1 and Group 2 using Global Competitive Index (GCI)
 - Global Competitive Index (GCI): Divides countries in three groups depending on their income level → Innovation Driven, Efficiency Driven and Factor Driven
- Countries belonging to Group 1 are Innovation Driven with $I_i = 1$
- Countries belonging to Group 2 are non-innovation driven (Efficiency Driven and Factor Driven) with $I_i = 0$

The Endogenous Regime Switching Model (Maddala and Nelson, 1975) Exogenous Sample Separation

- Total Factor Productivity (Penn World Table 9.1): gives a measure of TFP of different countries relative to US → correctly measures country specific TFP relative to US after controlling for differences due to changes in factor prices and input shares (see, Feenstra, et. al., 2015)
 - calculate $d_i = \frac{TFP_i}{TFP_{max}}$ separately for 2007 and 2009 \rightarrow gives distance of country *i* from global technology frontier
 - we find d_i ∈ (0, 0.47] for all innovation driven countries given by GCI
 ⇒ rich countries closer to global technology frontier innovate as suggested by the Schumpeter's Theory of Creative Destruction

Interpretation:

• division of countries in Group 1 and Group 2 according to their distance from the Global Technology Frontier

International Property Rights Index (IPRI)

- Calculated for different countries based on average of 3 components given below \rightarrow broadly represents institutions influencing innovation
 - Legal and Political Environment (LP): calculated as average of (i) Judicial Independence, (ii) Confidence in Courts, (iii) Political Stability and (iv) Control of Corruption
 - **Physical Property Rights (PPR):** calculated as average of (i) Protection of Physical Property Rights, (ii) Ease of Registering Property and (iii) Access to Loans
 - Intellectual Property Rights (IPR): calculated as average of (i) Protection of Intellectual Property Rights, (ii) Patent Protection, (iii) Copyright Piracy Protection and (iv) Trademark Protection
- IPRI $\in (0,10)$ represents country specific intellectual property rights and institutions
 - 10 represents strongest property rights protection and vice-versa

The Endogenous Regime Switching Model (Maddala and Nelson, 1975) Exogenous Sample Separation

• We have estimated our model for the period 2007-2017

• No inter group transition of countries: Innovation driven rich countries belonging to Group 1 and Non-innovation driven poor countries belonging to Group 2 in the beginning of 2007 remain in their respective group till the end of 2017

20 / 37

Estimation of Probit Model for 2007-2017 $_{\mbox{Stage 1}}$

- $Z_i = \left(\overline{R\&DtoGDP}_{07-17,i}, \overline{IPRI}_{07-17i}\right)', \gamma = (\gamma_1, \gamma_2)'$
- Indicator variable $I_i \sim Ber~(\Phi_i)$

 $egin{aligned} I_i &= 1 & ext{with probability } \Phi_i \ &= 0 & ext{with probability } (1 - \Phi_i) \end{aligned}$

21 / 37

• Estimate γ by MLE \rightarrow estimated probability of innovation $\widehat{\Phi}_i = \Phi\left(\widehat{\gamma}' Z_i\right)$

Results of Probit Model for 2007-2017

- Estimated Probit model for 2007 with 64 countries (27 innovation driven and 37 non-innovation driven) \rightarrow country specific probability of innovation $\widehat{\Phi}_i = \Phi\left(\widehat{\gamma}' Z_i\right)$
 - estimated coefficient associated with $\overline{\textit{IPRI}}~(\widehat{\gamma}_1){:}~1.407$
 - estimated marginal effect of *IPRI*: 0.096 (3.58) ⇒ one unit rise in *IPRI* increases average probability of innovation by 9.6% (statistically significant at 1% level)
 - estimated coefficient associated with $\overline{R\&DtoGDP}$ ($\hat{\gamma}_2$): 2.059
 - estimated marginal effect of R&DtoGDP: 0.141 (3.37) \Rightarrow one unit rise in $\overline{R\&DtoGDP}$ increases average probability of innovation by 14.1% (statistically significant at 1% level)

• **Pseudo**-
$$R^2 = 0.82$$

• Calculate,

$$\widehat{W}_{1i} = \frac{\widehat{\phi}_i}{\widehat{\Phi}_i},$$

$$\frac{\partial \widehat{W}_{1i}}{\partial z_{ki}} = -\left[\frac{\widehat{\Phi}_i \times \left(\widehat{\gamma}' Z_i\right) + \widehat{\phi}_i}{\left(\widehat{\Phi}_i\right)^2}\right] \widehat{\phi}_i \widehat{\gamma}_k < 0 \text{ (as } \widehat{\gamma}_l > 0) \qquad (8)$$

э

Chattopadhyay, KK & Ghosh (IIT KGP) PROPERTY RIGHTS, INNOVATION, GROWTH December 12, 2019

• Calculate,

$$\begin{split} \widehat{W}_{2i} &= \frac{\widehat{\phi}_i}{1 - \widehat{\Phi}_i}, \frac{\partial \widehat{W}_{2i}}{\partial z_{ki}} = \left[\frac{\widehat{\phi}_i - \left(1 - \widehat{\Phi}_i\right) \times \left(\widehat{\gamma}' Z_i\right)}{\left(1 - \widehat{\Phi}_i\right)^2} \right] \widehat{\phi}_i \widehat{\gamma}_k \\ &\frac{\partial \widehat{W}_{2i}}{\partial z_{ki}} \gtrless 0 \text{ according as, } \widehat{\phi}_i - \left(1 - \widehat{\Phi}_i\right) \times \left(\widehat{\gamma}' Z_i\right) \ \gtrless 0 \qquad (9) \end{split}$$

• We find $\frac{\partial \widehat{W}_{2i}}{\partial z_{ki}} > 0$ for all non-innovation driven countries

Chattopadhyay, KK & Ghosh (IIT KGP) PROPERTY RIGHTS, INNOVATION, GROWTH Decem

OLS Estimation of Equation (5) for 2007-2017 $_{Stage 2}$

• Dependent Variable:

• average annual growth rate of innovation driven countries belonging to Group 1 (g_{1i})

• Control Variable (X_i): based on Barro (1991)

- initial income (log (*GDP*₂₀₀₇))
- human capital (average investment to GDP from 2007-2017)
- savings rate (average investment to GDP from 2007-2017)
- trade openness (average trade to GDP from 2007-2017)
- constant

OLS Estimation of Equation (5) for 2007-2017 $S_{tage 2}$

- Number of Countries belonging to Group 1: 27
 - estimated coefficient of initial income $(\widehat{\beta}_{11})$: -0.192 (-4.5) \Rightarrow poor countries in Group 1 grows faster in long-run (significant at 1% level) \Rightarrow conditional convergence
 - estimated coefficient of human capital (β
 ₁₂): 0.024 (4.24) ⇒ better human capital promotes long-run growth (significant at 5% level)
 - estimated coefficient of savings rate $(\hat{\beta}_{13})$: 0.539 = (1.42) \Rightarrow higher investment promotes long-run growth (non-significant) \Rightarrow countries are in steady state
 - estimated coefficient of trade openness $(\hat{\beta}_{13})$: 0.071 = (5.89) \Rightarrow better trade to GDP ratio promotes long-run growth (significant at 1% level)
- $\overline{R}^2 = 0.68$

OLS Estimation of Equation (5) for 2007-2017 $S_{tage 2}$

- Estimated coefficient of \widehat{W}_{1i} ($\widehat{\sigma}_{1\epsilon}$): 0.146 (11.67)
- Equation (8) gives $\frac{\partial \widehat{W}_{1i}}{\partial z_{ki}} < 0$ and equation (5) gives

$$\frac{\partial \widehat{g}_{1i}}{\partial z_{ki}} = -\widehat{\sigma}_{1\epsilon} \ \frac{\partial \widehat{W}_{1i}}{\partial z_{ki}} > 0$$

 better ambience for undertaking R&D activities promotes long-run growth through technological innovation for innovation driven rich countries

27 / 37

OLS Estimation of Equation (6) for 2007-2017 $S_{tage 2}$

• Dependent Variable:

• average annual growth rate of non-innovation driven countries belonging to Group 2 (g_{2i})

• Control Variable (X_i): based on Barro (1991)

- initial income $(\log(GDP_{2007}))$
- human capital (average investment to GDP from 2007-2017)
- savings rate (average investment to GDP from 2007-2017)
- constant

• Number of Countries belonging to Group 2: 37

- estimated coefficient of initial income $(\hat{\beta}_{21})$: -0.134 (-2.67) \Rightarrow poor countries in Group 2 grows faster in long-run (significant at 5% level) \Rightarrow conditional convergence
- estimated coefficient of human capital $(\hat{\beta}_{22})$: 0.0242 (1.56) \Rightarrow better human capital has no significant impact for long-run growth non-innovation driven countries
- estimated coefficient of savings rate $(\widehat{\beta}_{23})$: 1.717 (6.17) \Rightarrow higher investment promotes long-run growth (significant at 1% level) \Rightarrow countries are in transition

•
$$\overline{R}^2 = 0.54$$

OLS Estimation of Equation (6) for 2007-2017 $S_{tage 2}$

Estimated coefficient of W_{2i} (σ̂_{2ε}): −0.046 (−0.46) ⇒ σ̂_{2ε} is of correct sign but non-significant

$$\frac{\partial \widehat{g}_{2i}}{\partial z_{ki}} = \widehat{\sigma}_{2\epsilon} \ \frac{\partial \widehat{W}_{2i}}{\partial z_{ki}} < 0$$

• better ambience for undertaking R&D activities has no impact on economic growth for non-innovation driven poor countries • Lee and Trost (1977):

$$E(\eta_{1i}^{2} | I_{i} = 1) = \sigma_{1}^{2} - \sigma_{1\epsilon}^{2} W_{1i} \left[\left(\gamma' Z_{i} \right) + W_{1i} \right]$$
(10)
$$E(\eta_{2i}^{2} | I_{i} = 0) = \sigma_{2}^{2} + \sigma_{2\epsilon}^{2} W_{2i} \left[\left(\gamma' Z_{i} \right) - W_{2i} \right]$$
(11)

- Equation (10) and (11) show errors of equation (5) and (6) are heteroscedastic ⇒ should be estimated by GLS
- White's test and Glesjer test: errors of equation (5) and (6) homoscedastic ⇒ can be estimated by OLS

Estimation of Variance for 2007-2017 Issues Related to GLS

• Source of heteroscedasticity in equation (10) and (11) are $W_{1i}\left[\left(\gamma' Z_i\right) + W_{1i}\right]$ and $W_{1i}\left[\left(\gamma' Z_i\right) + W_{1i}\right]$ respectively

• η_{1i} and η_{2i} homoscedastic when σ_{1e}^2 and σ_{2e}^2 in equation equation (10) and (11) are zero

- Regress $\widehat{\eta}_{1i}^2$ on a **constant** and $-\widehat{W}_{1i}\left[\left(\widehat{\gamma}' Z_i\right) + \widehat{W}_{1i}\right]$
 - $\tilde{\sigma}_{1\epsilon}^2 = 0.023 \ (0.45) \Rightarrow \sigma_{1\epsilon}^2$ is statistically non-significant \Rightarrow homoscedastic error of equation (5)
- Regress $\widehat{\eta}_{2i}^2$ on a **constant** and $\widehat{W}_{2i}\left[\left(\widehat{\gamma}' Z_i\right) \widehat{W}_{2i}\right]$
 - $\tilde{\sigma}_{2\epsilon}^2 = 1.954 \ (0.54) \Rightarrow \sigma_{2\epsilon}^2$ is statistically non-significant \Rightarrow homoscedastic error of equation (6)
- Equation (5) and (6) can be estimated efficiently by OLS

32 / 37

• Following Lee and Trost (1977):

• Regress
$$\left(\widehat{\eta}_{1i}^2 + \widehat{\sigma}_{1\epsilon}^2 \widehat{W}_{1i} \left[\left(\widehat{\gamma}' Z_i\right) + \widehat{W}_{1i}\right]\right)$$
 on a constant
 $\rightarrow \widehat{\sigma}_1^2 = 0.008 \ (1.62)$
• Regress $\left(\widehat{\eta}_{2i}^2 - \widehat{\sigma}_{2\epsilon}^2 \widehat{W}_{2i} \left[\left(\widehat{\gamma}' Z_i\right) - \widehat{W}_{2i}\right]\right)$ on a constant
 $\rightarrow \widehat{\sigma}_2^2 = 0.012 \ (4.87)$

Estimated Variance-Covariance Matrix for 2007-2017

• Estimated Variance-Covariance Matrix

$$\widehat{\Sigma} = \left(egin{array}{ccc} 0.008 & \sigma_{12} & 0.146 \ & 0.012 & -0.046 \ & & 1 \end{array}
ight)$$

• σ_{12} cannot be identified in this model

- We have estimated our model for the period 2009-2017 with 79 countries (31 innovation driven and 48 non-innovation driven)
 - we got identical results

- Capital accumulation is the only factor promoting economic growth for the non-innovation driven poor countries belonging far away from the global technological frontier
- Economic growth for the innovation driven rich countries is independent of physical capital accumulation as they already reached their steady state
- Conditional convergence prevails for both innovation driven rich countries and non-innovation driven poor countries
- Better human capital and better ambience for undertaking R&D activities promotes economic growth through technological innovation only for the innovation driven rich countries belonging closer to the global technological frontier

3

Thank You

< □ > < ---->

æ

э