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DO FINANCIAL MARKETS EXHIBIT CHAOTIC BEHAVIOUR? EVIDENCE
FROM AN EMERGING ECONOMY

Abstract

Chaotic deterministic models with sensitive dependence on initial conditions provide a

powerful tool in understanding the apparently random movements in financial data. This study

examines four financial markets in India, an emerging economy, for possible chaotic

behavior. We employ four tests, viz. the BDS test on raw data, the BDS test on pre-filtered

data, Correlation Dimension test and the Brock’s Residual test. The financial markets

considered are the stock market, the foreign exchange market, the money market and the

government securities market. The results from these tests provide very weak evidence for the

presence of chaos in Indian financial markets.

Keywords: Chaos, non linear dynamics, correlation dimension.

JEL Classification: G10, G14

1. Introduction

The bedrock of numerous studies in modern investment analysis is the efficient market

hypothesis which conceptualizes the stock market as a stream of stochastic news that moves

prices in random directions. Yet investors continue to exploit this “efficient” market to reap

rich rewards. The emerging field of chaos theory provides valuable insights into

understanding processes which, despite apparent randomness, have an inherent order. Chaos

theory, which is the study of complex non linear dynamical systems, is a new tool made

available to researchers looking for deterministic patterns in apparently random series of data

like the time series data of a stock market index (Trippi, 1995). Chaos refers to bounded

steady-state behavior that is neither a point equilibrium nor periodic or quasi-periodic

(Barkoulas and Travlos, 1998). The distinctive feature of chaotic processes is sensitive

dependence on initial conditions (popularly known as the Butterfly effect) which means that
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two points in a system that have very similar initial conditions may exhibit substantially

different trajectories.

Most traditional tests to detect linear or non-linear deterministic patterns in series fail to detect

the presence of chaos. One reason for this is the breakdown of forecasting capability in

chaotic series beyond limited time periods. But a range of tests developed by researchers over

the last two and a half decades for detection of chaos in mathematical and physical sciences,

when suitably modified, can be advantageously applied to study the presence of chaos in stock

markets. The advantage of these tests is that they not only detect chaos if it is present; even in

its absence they provide insight into the deterministic (linear and non-linear) or stochastic

nature of the time series under consideration. Thus these tests can serve as valuable tools in

understanding the order, if any, in large time series data.

The search for chaos in financial markets has been mostly restricted to stock markets and that

too in developed countries (e.g. Scheinkman and LeBaron, 1989; Copeland et. al., 1995;

Olmeda and Perez, 1995). However given the very different institutional features of financial

markets in developing countries, it is important to explore the possibilities of such markets

exhibiting chaotic behavior. Financial markets in developing countries are relatively less

mature and deep as compared to those in developed countries, and the implications of

complex non linear behavior could be significant for traders, institutional investors as well as

policy makers. This paper undertakes a case study of India, an emerging economy, and

employs several tests to detect chaos in various types of financial market, viz. the stock, forex,

bond and money markets. While this is one of the very few studies on chaos for a developing

economy, it is to our knowledge the first study that analyzes several financial markets

employing a battery of tests for chaos.

The motivation for undertaking this study is not only the dearth of research in this domain but

also the potential implications of such a study for players in these markets. Detection of a

deterministic model would mean an opportunity for hedgers, speculators as well as

arbitrageurs to play the markets better. Given the fact that the Indian growth story has started

unfolding in the last few years and India is currently one of the fastest growing economies in



3

the world today, most of India’s financial markets are booming and the implications of such

modeling are indeed immense.

The paper is organized as follows. Section 2 introduces certain basic concepts in chaos.

Section 3 discusses the extant evidence in the empirical literature. Section 4 outlines the tests

used in the paper for detection of chaos and Section 5 introduces the data. This is followed by

Section 6 that presents and discusses the results obtained. Finally, section 7 concludes the

paper.

2. Detecting Chaos: Some Basic Concepts

The equilibrium state to which a system evolves over time is called its attractor. A point

attractor exists if a system’s equilibrium tends to a point. A falling pebble or a damped

pendulum is a common instance of a system with a point attractor. In case a limit cycle

attractor exists, the system, over time, tends to a repeating sequence of states – a periodic

orbit. A simple pendulum with periodic replenishments of energy is an instance of such a

system.

While the above two types of attractors are easy to detect, a third type of attractor, the chaotic

attractor, has generated a lot of interest in recent times. Any chaotic time-series has chaotic

attractors. Thus detecting chaotic attractors would indicate the presence of chaos. With a

chaotic attractor, equilibrium applies to a region, rather than a particular point or orbit;

equilibrium becomes dynamic (Peters, 1991). The chaotic attractor is a set of states such that

if a system starts with its initial condition in the attractor’s basin of attraction, it eventually

ends up in the set. Also once a system is on an attractor, nearby states diverge from each other

exponentially fast. Thus any noise or error in measurement gets amplified rapidly and beyond

a point the system becomes unpredictable. And most often, chaotic attractors display elegant

symmetric structures with self-similarity at different scales (fractals).

In more formal terms, a map has a chaotic attractor if it displays a sensitive dependence to

initial conditions or has at least one positive Lyapunov exponent (discussed later).  These

attractors have certain unique characteristics that make their empirical detection possible.
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Firstly, they exhibit a non-integer fractal dimension1. Algorithms have been developed to

measure the fractal dimension of an attractor directly, e.g. Box counting algorithms, or its

substitute measures, most notably, the correlation dimension measure developed by

Grassberger and Procaccia (1983). The tests that we employ in this paper are based on the

latter.

Secondly, the sensitive dependence on initial conditions can be checked by measuring the

Lyapunov exponents of the attractor. This exponent of a dynamical system characterizes the

rate of separation of infinitesimally close trajectories (Trippi, 1995). Further, topological

approaches developed to detect chaos analyze the organization of a chaotic attractor and the

mechanisms (stretching and compressing) responsible for its existence.2

3. Existing Evidence

Scheinkman and LeBaron (1989) was the first attempt at applying the tools of non-linear

dynamics to stock market returns.3 They reported some evidence of chaos in daily and weekly

stock returns for U.S. markets. Empirical tests on the existence of deterministic chaos in

economic series have proliferated only in recent years (see Sayers, 1991 for a survey) and

there has been a surfeit of studies of chaos in stock markets in various countries. Willey

(1992) studied the daily closing prices of the S&P Composite Index and the NASDAQ-100

Index but failed to detect any deterministic chaos. Pandey et. al. (1998) do not find low-

dimensional deterministic chaos in five major European and U.S. stock markets. Copeland et.

al. (1995) provide evidence for non linearity in the U.K. FTSE-100 Index and employ

Generalised Autoregressive Conditional Heteroscedasticity (GARCH) models to explain some

of the non linearity.

Compared to the number of studies of chaos in stock markets, research for chaos in the other

1 Imagine a square decomposed into 4 self-similar, identical sub-squares. Each sub-square would need to be magnified by a

factor of 2 to get the original square. Intuitively, the ratio 4 / 2 is the fractal dimension of the square. For a formal definition

of fractal dimension, refer Gulick (1992).
2 Refer Gilmore (1993) for further elaboration on the topological approach.
3 Hsieh (1990) provides a comprehensive exposition of various techniques to detect chaos in financial markets.
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financial markets is scarce. Hsieh (1989) and Kugler and Lenz (1993) were one of the initial

studies of nonlinearities in exchange rates and Diebold and Nason (1990) carried out

nonparametric estimations of non-linear models. An important study in the interest rate and

foreign exchange market was Wagner and Mahajan (1999) where interest rates for 11

countries (corresponding to Belgium, Canada, France, Germany, Italy, Japan, the Netherlands,

Sweden, Switzerland, the United Kingdom and the United States) as well as spot and forward

foreign exchange rates for ten currencies over the period January 1974 to November 1991 was

studied. With the use of the BDS statistic and a correlation dimension analysis, the paper's

primary findings were that (1) foreign exchange markets have become increasingly complex

and therefore less amenable to forecasting over time; (2) although forward exchange risk

premia are statistically significant and display a deterministic structure, this structure is

complex and therefore not easily discernible; and (3) innovations in real exchange rates are

consistent with a Purchasing Power Parity equilibrium.

While there are a number of studies of chaos in developed financial markets, studies on

emerging markets are comparatively limited though since the last decade there has been a

flurry of publications. Barkoulas and Travlos (1998) was a study of the Athens stock

exchange and Olmeda and Perez (1995) of the Spanish exchange. Antoniou et. al (1997)

studied the Istanbul stock exchange for non-linearity and Bendel and Hamma’s (1996) was a

study of persistence in South African financial series. Pandey et. al. (1997) undertook a study

of non-linearities of equity markets in the major Asia Pacific rim countries.

There is a scarcity of empirical research in this field in the Indian context. Daterao and

Madhusoodanan (1996) attempted to study chaos in the Reserve Bank of India Index Numbers

of Security Price series for the time period 1953 to 1994 taking both weekly and monthly

numbers. They employed correlation dimension and the Hurst exponent as measures of chaos.

The correlation dimension of the series was found to be between 2 and 3 and the Hurst

exponent was found as higher than 0.5 for daily data (indicating persistence) and lesser that

0.5 for the monthly data series. It was thus concluded that market was not efficient. Yet given

the unusual data series chosen for studying Indian financial markets, the limited number of

data points (504 data points for monthly series), the methodological shortcomings (the
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correlation dimensions calculated only up to embedding dimension of 6 for calculating

correlation dimension of the series) and the limited number of tests undertaken, there is a

great scope for improvement.

Another study by Thenmozhi (2000) also concluded that the BSE4 (India) returns series is not

random but non-linear in nature. Daily and weekly returns value of BSE from 1980 to 1997

were considered for the study and while the Hurst exponent was higher than 0.5 for the

weekly data, for the daily data it was below the threshold. The BDS test rejected the null

hypothesis of whiteness and the correlation dimension was calculated as between 2 and 3.

Again the shortcomings of this study include the limited number of data points, the limited

number of chaos tests applied, and the inference about correlation dimension of the series

from calculations for a very limited number of embedding dimensions.

There is no major study on chaos in Indian forex, bond or money market. Understanding the

inherent order of the Indian financial market indices through trying to detect deterministic

chaos - if any - in them is the focus of this paper and the following series have been analyzed

for chaos in this study:

• National Stock Exchange daily returns (stock market)

• Bombay Stock Exchange daily returns (stock market)

• Dollar Rupee Exchange rates (forex market)

• Call Money Rates (money market)

• Long term bond yields (bond market)

4. Empirical Strategy

The empirical analysis undertaken in this study aims at investigating the presence/ absence of

chaos in Indian stock markets and its implications. For this purpose, tests are undertaken to

detect a chaotic attractor in time series data taken from the stock market. Our empirical

strategy is essentially as follows. We first employ the BDS test to ascertain whether the raw

data is random. If the null of randomness is rejected, then the series may be either non linear

4 Bombay Stock Exchange, Mumbai
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stochastic or non linear deterministic. We then filter the series using the appropriate GARCH

model and run the BDS test on the residuals. If the null of randomness is not rejected, then the

series must be following the fitted process. Otherwise, the series may contain non linear

deterministic process which may be chaotic. This is further investigated using the Correlation

Dimension and Brock Residual tests of chaos. An overview of each test is presented below.

4.1. Test-1: BDS Test on raw data

The BDS (developed by Brock, Dechert and Scheinkman (1987)), is used to test the null

hypothesis of whiteness (randomness) against an unspecified alternative using a

nonparametric technique. The statistic based upon the correlation function is

),,(
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where ),,( εσ mN
∧

 is an estimate of the asymptotic standard deviation of

mNCmNC ),1,(),,( εε − . The formula for ),,( εσ mN
∧

 can be found in Brock, Dechert, et al.

(1996). The BDS statistic is asymptotically standard normal under the whiteness null

hypothesis.

The intuition behind the BDS statistic is as follows. The correlation function ),,( εmNC  is an

estimate of the probability that the distance between any two m-histories, Xt and  Xs, of the

series {xt} is less than . If {xt} were independent, then for st ≠ the probability of this joint

event equals the product of the individual probabilities. Moreover, if {xt} were also identically

distributed, all of the m probabilities under the product sign would be the same. The BDS

statistic therefore tests the null hypothesis that mNCmNC ),1,(),,( εε = , which is equivalent to

the null hypothesis of whiteness.

Since the asymptotic distribution of the BDS test statistic is known under the null hypothesis

of whiteness, the BDS test provides a direct statistical test for whiteness against general
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dependence, which includes both nonwhite linear and nonwhite nonlinear dependence.

4.2. Test-2: BDS Test on filtered series

This is a special application of the BDS test wherein a model is first fitted into the original

series and the residual series is subjected to the BDS test. The residual series will be random if

the fitted model is the correct specification and not random otherwise. Thus the BDS on

residuals can be used to check if the best fit model for a given time series is a linear or non-

linear model by fitting the best in class model into the original time series (for instance

GARCH for non-linear in variance class of models) and applying the BDS test to check the fit

of the model. Since financial time-series are known to exhibit clustering, we use appropriate

GARCH models (based on information criteria) to filter the original series in all cases.

4.3. Test-3: The Correlation Dimension Test

Intuitively, imagine a shooter shooting at a point target located some distance away. After a

large number of shots, if one were to check the target, some interesting inferences about the

“sharpness” of the shooter could be drawn (sharpness being the anti-thesis of randomness). If

the shots were completely random, a circle of radius 2 units drawn around the point would

have 4 times the number of shots as a circle of radius 1 unit (and the shooter would need to go

back to training!). A measure of the “sharpness” of the shooter could be the proportion value:

the number of shots within a certain circular area as a fraction of the total number of shots, as

the number of shots tends to infinity; the lesser the value of the fraction, the “sharper” the

shooter. Now suppose instead of shots, one had a large number of data points and the distance

between any two data points was measured and known. The proportion of data points with

distances less than a pre-determined value could serve as a measure of the randomness in data;

it is called the correlation integral.

Formally, the correlation integral C(g) for a time series is defined for different length scales g,

by the equation,

                                                                           N

C(g)=Lim infinity[1/N(N-1)] j(g,Xi,Xj)
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where N is the sample size, Xi,  Xj are observations in time series and (g,Xi,Xj)  is  the

Heaveside function:

                 1 if | Xi - Xj | < g

(g,Xi,Xj)={

                 0 if | Xi - Xj | > g

Grassberger and Procaccia (1983) show that:

C(g) = Constant × g d

where the exponent d is called correlation dimension and is proposed as a measure of the

fractal dimension. Thus correlation dimension, for a particular embedding dimension5, (call it

k), is the slope, of the regression: log C(g) versus log g for small values of g.

To estimate the true correlation dimension of a chaotic attractor from a single variable time

series data, it is embedded in successively higher dimensions till k converges to a stable value

(plateau-ing of the graph) which is the true correlation dimension value.

In case of white noise, as the number of embedding dimensions increases, the correlation

dimension increases at the same rate forever (the slope is 1 and the correlation dimension is

equal to the embedding dimension) since white noise, being random, fills whatever space is

available to it. If the correlation dimension increases (as the embedding dimension is

increased) but at a much slower rate (slope much lesser than one), it suggests a deterministic

system which is not chaotic. The importance of the correlation dimension arises from the fact

that the minimum number of variables to model a chaotic attractor is the smallest integer

greater than it.

5 Embedding dimension or Euclidean dimension represents the number of coordinates necessary to define a point.
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4.4. Test-4: Brock’s Residual Test

Brock (1986) shows that the estimated correlation dimension of the residuals from the best

fitting serial generator model must be the same as that of the original data if the data is chaotic

(or has a chaotic attractor). If the data are stochastic, the dimension of the residuals will

increase since they have less structure than the original data (Yang and Brorsen, 1993). The

key is to first make the residuals as close to white noise as possible by filtering with

traditional linear or non linear stochastic models and then check the residual series for chaos.

To confirm deterministic chaos, diagnostics should meet the saturation condition as well as

Brock’s residual test. That is, beyond some embedding dimension, estimated correlation

dimension for both raw and residual data should be the same and be stable with embedding

dimension (Yang and Brorsen, 1993).

5. Data

We discuss the data used in this study as follows.

Stock Market Data

Two major Indian Stock markets are studied for chaos:

• National Stock Exchange, Mumbai

For NSE, the input data for this study was the daily closing index value of the S&P

CNX Nifty, National Stock Exchange, for the period April 02, 1993 to September 20,

2005.6 This gave us 3067 data points.

• Bombay Stock Exchange, Mumbai

The input data in this case was the daily adjusted closing index value of the BSE

index, for the period July 01, 1997 to January 20, 2006.7 This gave us 2120 data

points.

Closing index value was preferred over returns or logarithmic first difference values since the

autocorrelations in the original series would be lost otherwise (Peters, 1991). The index values

6 Available at http://www.nse-india.com/, accessed on 25th October, 2005.
7 Available at http://finance.yahoo.co.in/, accessed on 21st January, 2006.

http://www.nse-india.com/
http://finance.yahoo.co.in/
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were not filtered for growth of the economy as doing so would remove a significant linear

component of the data which is not desirable. Furthermore, ordinary investors trade on the

basis of the actual indices and not filtered values.

Exchange Rate Data

The daily dollar-rupee inter-bank exchange rate (as released by Reserve Bank of India) for the

period January 01, 1999 to December 16, 2005 was used for the study.8 This provided 2542

data points.

Money Market Data

The average of daily high and low call money rate (expressed in percentage, released by

Reserve Bank of India) for the period April 02, 2000 to January 25, 2006 was used for the

study.9 This provided 2069 data points.

Long Term Bond Rate

In 1997, the NSE created a well defined bond index to measure returns in the bond market

called the NSE Government Securities Index. Movements on this index reflect returns to an

investor on account of change in interest rate only, and not those arising on account of the

impact of idiosyncratic factors. It is used as a benchmark for portfolio management and also

for designing index funds and derivative products. For our study, the portfolio yield to

maturity (YTM) for NSE Gsec Index 8+ (i.e. of duration greater that 8 years) for the period

January 01, 1997 to January 27, 2006 was used.10 This provided 2629 data points.

Eviews version 5.0 was used for the BDS test. The Visual Recurrence Analysis software11

was used for estimation of the correlation dimension and time delay. For the Brock’s Residual

test and the BDS on residuals test, the model fitted into the original data series was the

GARCH model. SAS version 9.1 was used to fit plain vanilla GARCH to the time series and

8 Available at http://www.oanda.com/convert/fxhistory , accessed on 18th January, 2006.
9Available at https://reservebank.org.in/cdbmsi/servlet/login/ , accessed on 25thJanuary, 2006.
10Available at http://www.nseindia.com/, accessed on 29thJanuary, 2006.
11 Visual Recurrence Analysis, available at http://home.netcom.com/~eugenek/download.html

http://www.oanda.com/convert/fxhistory
https://reservebank.org.in/cdbmsi/servlet/login/
http://www.nseindia.com/
http://home.netcom.com/~eugenek/download.html
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residuals were obtained. Specifically GARCH(1,1) was selected on the basis of information

criteria.

6. Results and Discussion

6.1. Stock Market Data

a) NSE Returns

BDS Test on Raw Data

The results of the BDS test on the original time series are summarized in Table-1

Table 1 BDS Test Output (on returns data)

Dimension

BDS

Statistic

Standard

Error

z-

Statistic P-value

2 0.199694 0.001738 114.8747 0

3 0.339906 0.002766 122.8985 0

4 0.438038 0.003298 132.8292 0

5 0.506523 0.003442 147.1615 0

6 0.554027 0.003324 166.6684 0

7 0.586814 0.003051 192.358 0

8 0.60929 0.0027 225.6378 0

9 0.624471 0.002327 268.3952 0

10 0.634529 0.001963 323.1776 0

The null hypothesis (original series is random) is rejected for all measured dimensions. Thus

the series is non-white.

BDS Test on Residuals

The results of the BDS test on GARCH residuals are summarized in Table 2. The null

hypothesis (residual series is random) is rejected for all dimension values measured. Since the

GARCH residual series is not random, GARCH is not an appropriate fit model for the original

series.
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Table 2 BDS Test Output (on residuals)

Dimension

BDS

Statistic

Standard

Error z-Statistic P-value

2 0.021474 0.001531 14.02391 0

3 0.044081 0.002428 18.15845 0

4 0.059091 0.002884 20.49088 0

5 0.066554 0.002998 22.19634 0

6 0.070105 0.002885 24.30342 0

7 0.070923 0.002637 26.89612 0

8 0.068628 0.002325 29.51919 0

9 0.065004 0.001995 32.58077 0

10 0.060418 0.001677 36.03047 0

Correlation Dimension Test and Brock’s Residual Test

Figure-1 shows the plot of correlation dimension for increasing embedding dimensions,

obtained for the original time-series (S&P, CNX Nifty, April 02, 1993 to September 20,

2005).
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Figure-1

Plot of Correlation dimension for increasing Embedding dimensions for S&P CNX Nifty 12

A plain vanilla GARCH (GARCH(1,1)) was fitted into the S&P CNX Nifty time series to

obtain the residuals for Brock’s Residual test. The residuals of the GARCH(1,1) model were

tested for their correlation dimension and Figure-2 shows the plot .

12 Plot obtained from Visual Recurrence Analysis, the settings used were ‘Max radius=better saturation’, ‘Accuracy vs Speed

= more accurate’ and ‘Time delay = 35’. The Time delay value was obtained from the Mutual Information plot with setting

‘Detail = more’.
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Figure-2

Plot of Correlation dimension for increasing Embedding dimensions for GARCH(1,1)

residuals (NSE)13

Interpretation of Test Results

The BDS test unequivocally rejects the null hypothesis of whiteness for the Nifty series. To

determine whether the generator is non-linear stochastic or deterministic, the BDS test is

applied to the GARCH residuals. GARCH (1, 1) is the best-in-class representative for non-

linear in variance models. Since the null hypothesis is rejected for all tested dimensions it can

be concluded that the series generator may be non-linear deterministic.

13 The settings of the software were the same as for S&P CNX Nifty, except that the Time delay was set to 4, as obtained

from the Mutual Information plot.
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Next we test for the presence of chaos in the series. From figure-1 it can be seen that the

correlation dimension value does not plateau for increasing embedding dimensions as would

happen for a series with a chaotic attractor. Thus the S&P CNX Nifty is not chaotic.

On the other hand the slope of the graph is much lesser that 45 degrees and the correlation

dimension remains well below the embedding dimension even as the embedding dimension

increases (correlation dimension equals 2.5, 2.59, 2.67 for embedding dimensions 10, 11, 12

respectively). This means the S&P CNX Nifty time series is not stochastic but deterministic.

(As mentioned earlier, for a stochastic time series, correlation dimension is equal to

embedding dimension for increasing embedding dimension values.) This indicates a non-

chaotic deterministic series.

That the series is not chaotic can also be concluded from figure-2 wherein it is clear that the

correlation dimension plot of the residuals of S&P CNX Nifty does not coincide with that of

the original plot. Thus the series fails the Brock’s residual test and this indicates the absence

deterministic chaos.

b) BSE Returns

The results of the tests on the BSE time series is summarized in Tables 3-4 and

Figures 3-4.

Table 3 BDS Test Output (on returns data)

Dimension

BDS

Statistic

Standard

Error

z-

Statistic P-value

2 0.200277 0.001984 100.9296 0

3 0.340653 0.003154 107.9964 0

4 0.438793 0.003757 116.7793 0

5 0.507174 0.003918 129.4518 0

6 0.554559 0.00378 146.7133 0

7 0.587219 0.003465 169.4578 0

8 0.609602 0.003064 198.9517 0

9 0.624714 0.002637 236.8789 0

10 0.634689 0.002223 285.5038 0
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Table 4 BDS Test Output (on residuals)

Dimension

BDS

Statistic

Standard

Error z-Statistic P-value

2 0.023435 0.001834 12.77496 0

3 0.045381 0.002913 15.57949 0

4 0.061084 0.003466 17.62534 0

5 0.069794 0.003609 19.33821 0

6 0.074365 0.003477 21.38457 0

7 0.075145 0.003184 23.60215 0

8 0.07329 0.002811 26.06863 0

9 0.069968 0.002416 28.95482 0

10 0.066141 0.002034 32.5168 0

Figure-3

Plot of Correlation dimension for increasing Embedding dimensions for BSE Sensex(original

series)
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Figure-4

Plot of Correlation dimension for increasing Embedding dimensions for GARCH(1,1)

residuals (BSE )

Interpretation of Test Results

Using similar reasoning - as in the case of the NSE series - the following conclusions can be

drawn for the BSE series:

• From the BDS test result(Table 3), since the null hypothesis is rejected for all

dimensions

o The series is not random.

• From the result of BDS test on GARCH  residuals (Table 4), since the null hypothesis

is rejected for all dimensions

o GARCH is not an appropriate model for this series. If GARCH is taken as a

representative of non-linear in variance models, then this result may be

interpreted as the series having a non-linear deterministic generator.

• From the Correlation Dimension test (Figure 3) result where the correlation dimension

value does not plateau off and,

• from the Brock Residual test (Figure 4) since the Correlation Dimension plot of the

residuals does not coincide with the Correlation Dimension plot of the original series,
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o The series does not have a chaotic generator.

6.2. Exchange Rate Data
The results of the tests on the Exchange Rate time series is summarized in Tables 5-6 and

Figures 5-6.

Table 5 BDS Test Output (on original exchange rate series)

Dimension

BDS

Statistic

Standard

Error

z-

Statistic P-value

2 0.20352 0.00082 248.2379 0

3 0.346481 0.001294 267.7348 0

4 0.44644 0.00153 291.8732 0

5 0.516067 0.001582 326.2313 0

6 0.56439 0.001513 372.916 0

7 0.597752 0.001376 434.522 0

8 0.620578 0.001206 514.6532 0

9 0.63603 0.001029 618.2929 0

10 0.64633 0.000859 752.1291 0

Table 6 BDS Test Output (on residuals)

Dimension

BDS

Statistic

Standard

Error

z-

Statistic P-value

2 0.037041 0.002484 14.91075 0

3 0.062526 0.00396 15.7906 0

4 0.080045 0.004732 16.91443 0

5 0.091335 0.004952 18.44422 0

6 0.097068 0.004796 20.24127 0

7 0.096877 0.004414 21.94915 0

8 0.094143 0.003919 24.02405 0

9 0.08945 0.003387 26.40817 0

10 0.082943 0.002868 28.92217 0
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Figure-5

Plot of Correlation dimension for increasing Embedding dimensions for BSE Sensex(original

series)

Figure-6

Plot of Correlation dimension for increasing Embedding dimensions for GARCH(1,1)

residuals (BSE )

Interpretation of Test Results
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Using similar reasoning - as in the case of the NSE series - the following conclusions can be

drawn for the BSE series:

• From the BDS test result (Table 5), since the null hypothesis is rejected for all

dimensions

o The series is not random.

• From the result of BDS test on  GARCH  residuals (Table 6), since the null hypothesis

is rejected for all dimensions,

o GARCH is not an appropriate model for this series. If GARCH is taken as a

representative of non-linear in variance models, then this result may be

interpreted as the series having a non-linear deterministic generator.

• The Correlation Dimension plot for the original series (Figure 5) shows that the

correlation dimension value hovers below 2. From embedding dimension 13 to

dimension 20, the increment in correlation dimension is only 0.06. Yet since the

correlation dimension values don’t saturate, nothing definite can be inferred about

chaotic/non-chaotic nature of the series generator.

• Further, from the Brock Residual test the Correlation Dimension plot of the residuals

does not coincide with the Correlation Dimension plot of the original series suggesting

that the series does not have a chaotic generator. But since the Brock residual is not a

very powerful test, especially with less that four to five thousand data points, it would

not be prudent to outright reject the possibility of a weak chaotic generator for the

series.

6.3. Call Money Rates
The results of the tests on the Call Money Rate series is summarized in Tables 7-8 and

Figures 7-8.

Table 7 BDS Test Output (on original call money rate series)

Dimension

BDS

Statistic

Standard

Error

z-

Statistic P-value

2 0.17125 0.001936 88.45995 0

3 0.289421 0.003064 94.47228 0

4 0.368682 0.003633 101.4852 0

5 0.420591 0.003771 111.5399 0
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6 0.45328 0.003621 125.1666 0

7 0.472705 0.003305 143.0335 0

8 0.482919 0.002909 166.0167 0

9 0.487134 0.002492 195.463 0

10 0.487136 0.002091 232.9545 0

Table 8 BDS Test Output (on residuals)

Dimension

BDS

Statistic

Standard

Error

z-

Statistic P-value

2 0.058214 0.002595 22.4299 0

3 0.098087 0.004136 23.71399 0

4 0.121966 0.004942 24.67936 0

5 0.132718 0.00517 25.67255 0

6 0.132143 0.005004 26.40518 0

7 0.125683 0.004604 27.29823 0

8 0.117779 0.004086 28.82623 0

9 0.107374 0.00353 30.41825 0

10 0.09669 0.002987 32.36996 0

Figure-7

Plot of Correlation dimension for increasing Embedding dimensions for Call Money rate rate

(original series)
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Figure-8

Plot of Correlation dimension for increasing Embedding dimensions for GARCH(1,1)

residuals (Call Money series )

Interpretation of Test Results

• From the BDS test result(Table 7),

o The series is not random.

• From the result of BDS test on  GARCH  residuals (Table 8),

o GARCH is not an appropriate model for this series. If GARCH is taken as a

representative of non-linear in variance models, then this result may be

interpreted as the series having a non-linear deterministic generator.

• From the Correlation Dimension test (Figure 7) result where the correlation dimension

value does not plateau off and,

• from the Brock Residual test (Figure 8) since the Correlation Dimension plot of the

residuals does not coincide with the Correlation Dimension plot of the original series,

o The series does not have a chaotic generator.
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6.4. Long Term Bond Rates

Table 9 BDS Test Output (on original call money rate series)

Dimension

BDS

Statistic

Standard

Error

z-

Statistic P-value

2 0.200624 0.000784 255.84 0

3 0.342278 0.001235 277.0557 0

4 0.441358 0.001457 302.8496 0

5 0.510352 0.001504 339.2658 0

6 0.558106 0.001436 388.5493 0

7 0.590988 0.001303 453.539 0

8 0.613526 0.00114 538.203 0

9 0.628836 0.000971 647.8848 0

10 0.639147 0.000809 789.8303 0

Table 10 BDS Test Output (on residuals)

Dimension

BDS

Statistic

Standard

Error

z-

Statistic P-value

2 0.038571 0.002165 17.81675 0

3 0.074688 0.00345 21.64908 0

4 0.100829 0.004121 24.46604 0

5 0.115673 0.00431 26.83931 0

6 0.123939 0.004171 29.71555 0

7 0.127496 0.003836 33.23825 0

8 0.126724 0.003403 37.24147 0

9 0.123317 0.002939 41.96502 0

10 0.117565 0.002486 47.30023 0
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Figure-9

Plot of Correlation dimension for increasing Embedding dimensions for Long Term Bond

YTM (original series)

Figure-10

Plot of Correlation dimension for increasing Embedding dimensions for GARCH(1,1)

residuals (Long Term Bond YTM series )
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Interpretation of Test Results

The following can be inferred from the results of the test :

• From the BDS test result (Table 9),

o The series is not random.

• From the result of BDS test on  GARCH  residuals (Table 10),

o GARCH is not an appropriate model for this series. If GARCH is taken as a

representative of non-linear in variance models, then this result may be

interpreted as the series having a non-linear deterministic generator.

• The Correlation Dimension plot for the original series (Figure 9) shows that the

correlation dimension inches up to 3 with increasing embedding dimension. Yet since

the correlation dimension values don’t saturate (at least till embedding dimension 20)

nothing definite can be inferred about chaotic/non-chaotic nature of the series

generator.

• Further, from the Brock Residual test, the Correlation Dimension plot of the residuals

does not coincide with the Correlation Dimension plot of the original series suggesting

that the series does not have a chaotic generator. But since the Brock residual is not a

powerful test, especially with less that four to five thousand data points, it would not

be prudent to outright reject the possibility of a weak chaotic generator for the series.

7. Conclusion and Implications

The results from the paper can be summarized as follows.

Stock Markets:

What are the potential implications of linear deterministic stock markets (BSE or NSE) in

India which are not chaotic?

• First, a potential windfall for intelligent investors (hedgers and speculators) who can

use a number of investment strategies and financial models like trend analysis, market

timing, value investing, tactical asset allocation etc. which would fail in efficient

markets. Also equilibrium models assuming efficient markets (like the Capital Asset

Pricing Model or the Arbitrage Pricing Theory) or investment strategies based on them

would become suspect.

• Second, since forecasting does not become increasingly unpredictable into the future
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(as would happen in case markets were chaotic), long term forecasting is possible.

This again is a window of opportunity for investors trying to gain off the market.

• Finally, the market, being predictable, is vulnerable to manipulators: a wake-up call

for regulators who aim to keep the markets efficient.

A ray of hope might be the fact that as more and more models are built to exploit these

inefficiencies, the market will attain efficiency through the utilization of these opportunities

by the investors.

Exchange Rates:
Again, the major implications of a deterministic generator for exchange rate series would be

the host of opportunities it would offer to speculators, hedgers and arbitrageurs, though if the

generator is chaotic (as the Correlation Dimension test results of the study tends to suggest)

the long term benefits would be limited (due to the unpredictability of a chaotic series in the

long run).

• First, a potential gain for players in the currency derivatives (forwards/futures/options)

market. Determinism implies that the spot rate can be predicted into the future and can

be compared to available forward/future price and depending on the variance, an

appropriate position may be taken to make a killing.

• Second, hedge ratios and the amount of capital needed to cover possible losses during

time a futures position is held will come down dramatically since the probability

distribution of changes in futures prices could be estimated. This is especially

important since futures are marked to market every day.

Call Money Rate and Long Term Bond Yield rates:
• The implication of a deterministic call money rate series is potentially limited since it

is rarely used for purposes of speculation or hedging - the main benefactors of

predictability - and the call money based derivative instruments are rare in India.

• A deterministic long term bond yield rate series can be used by intelligent investors to

take appropriate positions in the bond market to make gains. For instance, predicted

falling interest rates would be a precursor to the sale of long term bonds and vice-

versa. Such models would be especially useful for tactical allocation (a form of

conditional asset allocation which consists of rebalancing portfolios around asset
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weights depending on conditional information. Again, a chaotic generator (as

suggested by the result of the Correlation Dimension test) would curtail the

predictability of the generator to limited time periods thus constraining its utility.

• Overall, given the small size and limited innovations in the interest rate derivatives

market in India, the financial impact and the opportunities unlocked by the discovery

of a deterministic or chaotic generator in the interest rate time series is currently

limited. As and when these instruments develop (as is bound to happen with the

maturing of the economy), the importance of these models will increase.

This study shows that recent time series data from Indian financial markets is not random.

This implies the rejection of efficient market hypothesis for Indian markets and a scope for

hedging and gains through speculation. Also given the non-chaotic deterministic nature of

these series it should be possible to forecast into the long term with minimal loss of

predictability. Given the large trade volumes, the immediate gain for investors from use of

such models would be maximal in the stock and forex markets. But in the long run as more

innovative instruments are created in the bond and money markets such models would be

equally useful in making gains in them.

But that old maxim of the market would still hold. As more and more such non-chaotic

deterministic models are used to forecast the market, the market will start to correct itself to

attain efficiency. And as the maxim goes, “The more and more you exploit, the more and

more efficient it becomes.”
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