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Abstract 
This paper explores to develop alternative models from the Autoregressive Conditional 

Heteroskedasticity (ARCH) or its generalisation, the Generalised ARCH (GARCH) 

family, to estimate volatility in the Indian equity market return. For this purpose, we have 

selected two indices each from the two widely traded stock exchanges in India – the 

Bombay Stock Exchange (BSE) and the National Stock Exchange (NSE). For empirical 

analysis, the 30-script and 100-script Stock Indices from the BSE, and the S&P CNX-

500 and S&P CNX-Nifty from NSE, have been selected. The sample covers daily 

observations from the beginning of January 2000 till the end of October 2007. The stock 

returns are found to possess the asymmetrical property. Apart from using own past 

information, we have explored two additional indicators - total Foreign Institutional 

Investors (FII) transactions and overnight changes in prices to explain the return prices. 

Empirically, it has been found that these indicators contain information in explaining the 

stock returns. The Threshold GARCH (TARCH) models are found to have explained the 

volatilities better for both the BSE Indices and S&P-CNX 500, while Exponential GARCH 

(EGARCH) models for the S&P CNX-Nifty. Evidence of increase in volatility due to 

certain negative factors has been found in all the equity markets. The estimates of the 

volatilities for all the indices are found to move in tandem through the application of 

spectral analysis. 

 

Introduction: 
Estimation of volatility in the equity market has got important implications for many 

issues in economics and finance. High volatility in the stock prices has many adverse 

effects in an economy. The investment decisions by investors may undergo changes 

due to high volatility, which may lead to a fall in the long-term capital flows from foreign 

as well as domestic investors. 
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This paper explores to develop alternative models from the Autoregressive Conditional 

Heteroskedasticity (ARCH) family to explain the Indian equity markets. For this purpose, 

we have selected two indices from each of the two main stock exchanges in India – the 

Bombay Stock Exchange (BSE) and the National Stock Exchange (NSE). For empirical 

analysis, the 30-script and 100-script Stock Indices from the BSE and the S&P CNX-100 

and S&P CNX-Nifty have been selected. In the literature of finance, alternative 

measures of volatility based on both models and estimators, have been proposed. 

Models and estimators, which assume constant volatility, are known as unconditional 

volatility. Afterwards it was recognized that volatility in the financial market occurs in 

clusters in time and is time varying. Models based on time varying volatility are known as 

conditional volatility.   

  

After the seminal work of Engle (1982), and later on as generalized by Bollerselv (1986), 

the Autoregressive Conditional Heteroskedasticity (ARCH) models become quite popular 

to estimate the volatility, especially in the equity markets. Generally, it is observed that 

upward movements in the equity markets are followed by lower volatilities than the 

downward movements of the same magnitude. This asymmetric effect is referred as the 

leverage effect. In such cases the ARCH/ GARCH models, which are symmetrical in 

nature, would be inadequate to model the volatility. To capture the asymmetrical impact 

of volatility, Glosten et al. (1993) and Zakonian (1994) proposed the Threshold GARCH 

(TARCH) and Nelson (1991) proposed the Exponential GARCH (EGARCH) models.  

 

In the literature, a vast amount of research effort has been done to estimate the volatility 

in the equity markets through the application of the family of ARCH models. In the 

context of the Indian economy, Karmakar (2006) through the application of an 

TARCH(1,1) model found existence of asymmetry in the daily returns in the Indian stock 

market. Evidence of contemporaneous transmission effects were also found across 

volatilities of the stocks and Index futures market using a TARCH model. Chen and Lian 

(2005) found existence of asymmetry in the equity markets of five ASEAN countries, viz. 

Malaysia, Singapore, Thailand, Indonesia and the Philippines, and found that the 

TARCH and EGARCH models performed better in forecasting the equity markets post 

Asian financial countries. Sollis (2005) found that macroeconomic variables contain 

valuable information to forecast stock returns and volatility in the S&P Composite Index 

during the 1970's, but not during the 1990's, under the GARCH framework.  



 

The remainder of the paper is organized into six sections. Section 2 describes various 

models and estimators to measures volatility, both conditional and unconditional. Section 

3 describes some basic statistical properties of the daily returns of the four selected 

stock prices. Results based on the empirical analysis are discussed in Section 4. Section 

5 explores the relationship between the volatilities in different stock indices through the 

application of spectral analysis. Finally, Section 6 concludes. 

 

2. Review of Volatility models and estimators: 
2.1. Unconditional Volatility estimators and models: 
2.1.1. Traditional estimators: 

During the initial stages, volatility of asset return was estimated as the square of the 

asset returns, estimated based on the closing prices, and was defined by the estimator – 
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2.1.2. Simple Variance: 

Another commonly used measure used to estimate the volatility is the simple variance, 

defined as, 
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One major limitation of this measure of volatility is the selection of the appropriate period 

to use. A long period may smooth out a lot of information and a short period will lead to 

very noisy estimate. 

 

2.1.3. Extreme-Value estimators:  

Parkinson (1980) proposed an extreme-value volatility estimator for an asset following 

driftless Geometric Brownian motion (GBM) and is defined as,  
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Later on, German and Class (1980) proposed an alternative extreme-value estimator 

based on the opening, closing, high and low prices. The estimator is defined as, 
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Though both the Parkinson and German-Class estimators are theoretically efficient, one 

major disadvantage of these estimators is that they are based on the assumption of 

driftless GBM process. Roger and Satchell (1991) proposed an estimator, which relaxes 

this assumption and proposed an alternative estimator. The Roger-Satchell estimator is 

defined as, 
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2.2. Conditional Volatility Models: 
2.2.1. Symmetrical Models: 

The Conditional volatility models incorporate time varying second order moments, where 

the series }{ ty  is decomposed into its conditional mean 
~

t
~

Xφ′ and conditional variance 2
tσ . 

Both 
~

t
~

Xφ′ and 2
tσ  depends on all past information available upto period (t-1).  

~
φ′  is the 

value of the co-efficient and 
~

tX is the vector of independent variables. 

 

The ARCH(q) model is defined as, 
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One major problem with the application of ARCH model is that it requires long lag length 

and consequently a large number of parameters need to be estimated. Subsequently, 

Bollerslev (1986) extended the Engel’s ARCH model by incorporating the autoregressive 

terms of the conditional variance. The specification of a GARCH(p,q) model is, 
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If the empirical estimates of the coefficients }{ iα  and }{ jβ  are such that their sum adds 

upto one or more in a statistically significant sense, any shocks to the variance will be 

persistent in the sense that the conditional variance tends to explode as t increases. 

 

Engle et al. (1987) proposed the ARCH-in-Mean (ARCH-M) model by introducing the 

conditional standard deviation into the mean equation. This model is commonly used 

where the expected returns on an asset is related to expected asset risk. The conditional 

standard deviation is used as a proxy for the risk and the estimated coefficient on the 

expected risk is considered as a measure of the risk-returns tradeoff. The ARCH-M(p,q) 

model is defined as, 
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2.2.2. Asymmetrical Models:     

The TARCH (p,q) model is defined as, 
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In particular for a TARCH(1,1) model, the specification for the conditional variance is 

defined as, 
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The TARCH model is formulated based on the assumption that unexpected changes in 

the market return measured by }{ tε have different impact on the conditional variance of 

the returns. In this specification, good news )0( >tε  and bad news )0( <tε  have different 



impact on the conditional variance. Good news, i.e. during the period of upward 

movement in the equity market, the variance will increase through the coefficient 1α . On 

the other hand, bad news, i.e. during the period of downward movement in the equity 

market, the variance will increase through the coefficient ).( 11 γα + A non-zero value of the 

coefficient 1γ  implies the asymmetrical nature of the return with a positive value of 1γ  

indicates the presence of leverage effect.  

 

The EGARCH (p,q) model is defined as, 
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In particular for a EGARCH(1,1) model, the specification for the conditional variance is 

defined as, 
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In the EGARCH model, where the conditional variance is characterized by exponential 

nature assumes that the external unexpected shocks will exert a stronger influence on 

the variance than in the TARCH model. A non-zero value of 1γ  indicates the existence of 

asymmetrical effect in the returns and a negative value indicates the presence of 

leverage effect.  

 

3. Basic Statistical Properties of the Stock Return: 
In India, the National Stock Exchange (NSE) and Bombay Stock Exchange (BSE) are 

the two major stock exchanges involved in the equity market. For our empirical analysis, 

we have considered two stock indices each from both the stock exchanges. The BSE-30 

and BSE-100, which are based on 30-script and 100-script, have been taken from the 

BSE for the analysis. On the other hand the two indices, viz., the NSE-S&P CNX-500 

and NSE-S&P Nifty, which are based on 500-script and 50-script, respectively, have 

been selected from the NSE. The nominal stock return is estimated as: 

 

The daily data for the indices are taken from the website of the two indices. Also the total 

value of the purchase and sales by the foreign investors during a day in the equity 

market may also influence on the equity prices. Daily data on the purchase of sales by 



foreign investors in the equity market has been collected from the website of Securities 

and Exchange Bank of India (SEBI). The data series covers the period from 3-January-

2000 to 31-October-2007 having 1954 daily observations. Figure-1 presents the daily 

returns of the four indices. By visual inspection, the possibility of existence of 

heteroskedasticity cannot be ruled out, as the amplitude of changes varies over time. 

 

Table-1 presents the descriptive statistics for all the four indices. The average daily 

returns are found to be approximately equal for all the four indices. The average daily 

return for BSE-100 is found to be slightly lower at 0.06%, while for the other three 

indices it is found to be 0.07%. 

 

The standard deviation of the return series is 1.5% daily for both BSE-30 and S&P-CNX 

Nifty or 24.3% annually, assuming 252 working days per year. For both BSE-100 and 

S&P-CNX 500, the standard deviation of the return series is found to be 1.7% or 27.0% 

annually.  

 

The coefficients of the skewness are found to be significant and negative for all the 

returns. The negative values indicate that the average investor in the equity market 

prefers negative asymmetry as compared to positive asymmetry. This indicates that a 

rational investor prefers portfolios with lower probability of large payoffs.  

 

Similarly, the coefficients of kurtosis are found to be positive and are significantly higher 

than 3, indicating highly leptokurtic distribution compared to the normal distribution for all 

the returns. The investor’s preferences for higher moments are important for security 

valuation and thus such preference take positive values.  

 

The Jarque-Bera statistic indicates lack of normal distribution in the equity returns, 

suggesting lack of symmetric nature in the equity returns. Figure-2 presents the Karnel 

density function of the all the return series, which confirms our finding that the series 

does not follow normal distribution.    

 

Both the Augmented Dickey-Fuller (ADF) and Philips-Perron test statistic rejects the null 

hypothesis of presence of unit roots suggest that all the return series are stationary in 

nature. Thus, in the long-run, the return series reverts back to its mean level and the 



unconditional variances of all the series are constant in nature. However, there may be 

periods in which the variance may be relatively high.  

 

Table-2 presents the Ljung-Box (LB) Q-statistic for high-order serial correlation for all the 

four return series up to lag 24. The Q-statistic rejects the null hypothesis of 

independence, suggesting that equity returns exhibit dependencies on its past behavior 

Table-3 presents the LB statistic of the squared series (also termed as a measure of 

volatility). The squared series indicates significant second-order dependencies in all the 

return series, suggesting the possibility of conditional variance heteroskedasticity effect.  

Thus the above results indicate that the return series are not independently and 

identically distributed, even though they follow a stationary process. 

Table-1: Descriptive Statistics of daily returns 
 BSE-30 BSE-100 S&P CNX-500 S&P CNX-Nifty 

Mean +0.0007 +0.0006 0.0007 +0.0007 

Std. Deviation +0.0153 +0.0166 +0.0167 +0.0153 

Maximum +0.0793 +0.0875 +0.1635 +0.0797 

Minimum -0.1181 -0.1194 -0.1607 -0.1305 

Skewness -0.6122 -0.6397 -0.7561 -0.6794 

Kurtosis +7.1659 +7.5142 +15.7186 +8.2785 

Jarque-Bera Statistics 1534.22 
(0.000) 

1786.84 
(0.000) 

13342.71 
(0.000) 

2417.54 
(0.000) 

Unit Root Test     

ADF test3 -31.57 -31.20 -12.35 -14.29 

Philips-Perron test -41.07 -39.97 -5.36 -40.50 

*The Critical values for the ADF test and Phillips-Perron test are –3.968 and –3.415 at 1% and 5% level of 
significance, as provided by MacKinnon.  
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where 0a is a constant, t represents deterministic trend and the lag length 'p' of differences are incorporated 

to ensure that error term tε becomes white noise. The lag length 'p' is determined based on the Akaike's 

Information Criterion (AIC). The null hypothesis to be tested is 0: 10 =aH against the alternative 0: 11 <aH  

 



Table-2: Autocorrelation and Ljung-Box Q-statistic for serial correlation 
BSE-30 BSE-100 S&P CNX-500 S&P CNX-Nifty Lag 

AC Q-stat p-val AC Q-stat p-val AC Q-stat p-val AC Q-stat p-val 

1 0.076 11.239 0.001 0.102 20.475 0.000 0.085 14.094 0.000 0.088 15.187 0.000 

2 -0.038 14.120 0.001 -0.038 23.286 0.000 -0.034 16.342 0.000 -0.077 26.701 0.000 

3 0.005 14.168 0.003 0.027 24.762 0.000 0.018 16.979 0.001 0.018 27.327 0.000 

4 0.056 20.217 0.000 0.070 34.260 0.000 0.072 27.113 0.000 0.059 34.196 0.000 

5 -0.006 20.285 0.001 0.013 34.580 0.000 0.006 27.196 0.000 0.008 34.310 0.000 

6 -0.034 22.536 0.001 -0.054 40.384 0.000 -0.023 28.223 0.000 -0.036 36.917 0.000 

7 -0.017 23.115 0.002 0.013 40.728 0.000 -0.011 28.472 0.000 -0.022 37.907 0.000 

8 0.003 23.137 0.003 0.017 41.261 0.000 0.028 30.018 0.000 -0.001 37.908 0.000 

9 0.053 28.703 0.001 0.053 46.757 0.000 0.051 35.220 0.000 0.052 43.184 0.000 

10 0.035 31.058 0.001 0.041 50.047 0.000 0.055 41.101 0.000 0.044 47.040 0.000 

11 -0.023 32.083 0.001 -0.008 50.170 0.000 0.001 41.102 0.000 -0.013 47.385 0.000 

12 -0.012 32.350 0.001 0.003 50.184 0.000 -0.014 41.509 0.000 -0.035 49.732 0.000 

13 0.023 33.369 0.001 0.021 51.017 0.000 0.045 45.505 0.000 0.044 53.620 0.000 

14 0.018 34.013 0.002 0.047 55.312 0.000 0.030 47.222 0.000 0.027 55.026 0.000 

15 0.010 34.203 0.003 0.002 55.317 0.000 -0.005 47.272 0.000 -0.001 55.026 0.000 

16 0.005 34.249 0.005 -0.001 55.318 0.000 -0.036 49.815 0.000 -0.011 55.257 0.000 

17 0.023 35.335 0.006 -0.003 55.335 0.000 0.050 54.714 0.000 0.027 56.729 0.000 

18 0.007 35.420 0.008 0.002 55.341 0.000 0.008 54.832 0.000 0.013 57.049 0.000 

19 -0.045 39.398 0.004 -0.060 62.390 0.000 -0.037 57.602 0.000 -0.028 58.624 0.000 

20 -0.061 46.693 0.001 -0.041 65.666 0.000 -0.055 63.656 0.000 -0.066 67.283 0.000 

21 0.036 49.280 0.000 0.034 67.891 0.000 0.025 64.846 0.000 0.088 15.187 0.000 

22 0.016 49.776 0.001 0.008 68.011 0.000 0.002 64.853 0.000 -0.077 26.701 0.000 

23 0.020 50.571 0.001 0.051 73.197 0.000 0.027 66.276 0.000 0.018 27.327 0.000 

24 0.031 52.511 0.001 0.002 73.205 0.000 0.004 66.301 0.000 0.059 34.196 0.000 

 
4. Model to estimate the volatility: 
As the return series are found to be asymmetrical as well as with leptokurtic in nature, 

the simple ARCH/ GARCH models, which are useful for symmetrical data series, will not 

be the appropriate models for analysis of the return series. This led to the adoption of 

the asymmetrical models, viz., TARCH and EGARCH models to explore the return 

series. Initially, TARCH/ GARCH models are estimated based on its own past 

information only. Thus the conditional variances estimated based on these models 

ignore completely the possible impact of other related economic variables such as the 

foreign inflows and domestic investment in the equity market. The value of the total 

purchase and sales by the foreign investors, during a day in the equity market, is an 

important factor, which impacts on the equity prices which may further lead to volatility in 

the Indian equity market. Apart from the foreign investment factor, other unforeseen 

factors may also have impact on the equity prices. Any unforeseen factors that may 



occur after the closing of the business day may be reflected through the opening prices 

of the next day. Especially, the movement in the stock prices in the western countries of 

the previous day or of the eastern Asian countries on the same day may have impact on 

the Indian equity market. To capture the impact of these unforeseen factors on the 

equity prices, we have defined a technical variable overnight_return, to measure the 

overnight changes in the stock prices, as follows: 
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All the models are estimated assuming Student t-distribution for the error terms to allow 

for kurtosis and TARCH/ GARCH to allow for skewness.  

 
Table 3: Alternative models for stock return )( tr  
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Model B EGARCH(1,1) 
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Model C Multivariate TARCH(1,1) 
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Model D Multivariate EGARCH(1,1) 
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We have explored four alternative models to estimate the volatility present in the four 

return series. Table-3 presents the alternative form of the models. The estimate of the 

volatility for a particular series has been obtained based on the best-selected model. The 

best model has been selected based on two statistical criteria, viz., with higher 2R and 

having minimum AIC. Also, we have compared the estimate of the volatility in the return 

series of stock indices with the estimates based on the Roger-Satchell estimator, though 

they are not strictly comparable. 

 

4.1. Model for BSE-30: 

The estimated four alternative models for BSE-30 are provided in Table-4. The Lagrange 

Multiplier (LM) test for the presence of residual serial correlation accepts the null 

hypothesis of lack of residual auto-correlation, as suggested by the p-values. Also, the 

ARCH-LM test for the presence of residual ARCH effect indicates lack of residual 

ARCH-effect. The LM tests suggest no significant specification error in the formulation of 

the models. The current return is found to be significantly influence by the previous-day 

return except as estimated under the Model C. None of the models could establish any 

significant impact on the current return by its second lag. However, the third and fourth 

lags are found to have significant impact in determining the current return. The total FII 

transaction’s under Model D is found to have significant impact in determining the daily 

return. On the other hand, the overnight return is found to contain significant information 

about the daily return, as suggested by the p-values.   

 

Under the two TARCH models (Model A and Model C), the coefficient of 2
1−tσ  are found 

to be significant, suggesting the salient features of the time-varying volatility of BSE-30 

stock returns. The term 2
1−tε is found to have significant impact on the conditional volatility 

under Model C. at the conventional level. The 1
2

1 −− tt ξε  terms are found to be significant 

and positive, thereby indicating evidence of asymmetrical impact of good/ bad news on 

the stock returns, i.e., existence of leverage effect. As mentioned earlier, the coefficient 

of 2
1−tε  measures the impact of good news, while, the sum of the two coefficients of the 

terms 2
1−tε and 1

2
1 −− tt ξε measures the impact of bad news. Thus, under Model A, bad news 

is expected to lead to an increase the volatility from 0.019 to 0.019+0.238 = 0.257. The 

volatility is expected to move up from 0.050 to 0.050+0.202=0.252 due to bad news 

under Model C.  



The two terms 
1
1
−

−

t
t

σ
ε and )ln( 2

1−tσ under the two EGARCH models, are found to be 

significant. Also the coefficients of the term 
1
1
−

−

t
t

σ
ε are found to be significant and negative 

under Model B and Model D, thus confirming the existence of leverage effect on the 

stock returns.  

  

The 2R is found to be maximum for both Model C and Model D. However, the AIC of 

Model C is found to be lower than the Model D, suggesting the superiority of Model C. 

This led to the adoption of Model C (Multivariate TARCH) to estimate the conditional 

volatility of daily return of BSE-30.  

 

Table-4: Estimated models for daily return – BSE 30 
 Model A Model B Model C Model D 
Conditional Mean equation: 
C1 +0.001 

(0.045) 
+0.001 
(0.623) 

-0.003 
(0.049) 

-0.004 
(0.002) 

1−tr  +0.108 
(0.000) 

+0.116 
(0.000) 

+0.042 
(0.089) 

+0.051 
(0.034) 

3−tr  +0.055 
(0.015) 

+0.057 
(0.009) 

  

4−tr  +0.053 
(0.030) 

+0.046 
(0.054) 

+0.067 
(0.005) 

+0.070 
(0.004) 

log (FII_ total)   +0.0001 
(0.053) 

+0.001 
(0.002) 

Overnight_ return   +0.747 
(0.000) 

+0.753 
(0.000) 

 
Conditional Variance equation: 
C2 +1.54e-05 

(0.000) 
-0.989 
(0.000) 

+1.38 e-05 
(0.000) 

-0.988 
(0.000) 

2
1−tε  +0.019 

(0.203) 
 +0.050 

(0.003) 
 

2
1−tσ  +0.784 

(0.000) 
 +0.768 

(0.000) 
 

1
2

1 −− tt ξε  +0.238 
(0.000) 

 +0.202 
(0.000) 

 

  

| 
1
1
−

−

t
t

σ
ε | 

 +0.266 
(0.000) 

 +0.276 
(0.000) 

1
1
−

−

t
t

σ
ε   -0.155 

(0.000) 
 -0.138 

(0.000) 

)ln( 2
1−tσ   +0.910 

(0.000) 
 +0.912 

(0.000) 
 

2R  0.002 0.001 0.130 0.130 

AIC -5.808 -5.800 -5.936 -5.930 
Serial Correlation - LM 6.481 

(0.691) 
7.477 

(0.588) 
10.171 
(0.426) 

10.714 
(0.380) 

ARCH-LM 0.677 
(0.775) 

0.892 
(0.555) 

1.236 
(0.252) 

1.224 
(0.260) 



4.2. Model for BSE-100: 

Table-5 presents the estimates of the four alternative models for BSE-100. The 

Lagrange Multiplier (LM) test for residual serial correlation and ARCH-effects accepts 

the null hypothesis of lack of residual auto-correlation and ARCH-effect as suggested by 

the p-values. Thus there is no significant specification error in the formulation of the 

models. The current return is found to be significantly influence by the previous-day 

return except for all the models. Also, as in the case of BSE-30, we could not establish 

any significant impact of the second lag on the current return. However, the third and 

fourth lags are found to have significant impact in determining the current return. The 

total FII transactions and the overnight return are found to have significant impact about 

the daily return, as suggested by the p-values under the multivariate setup.   

 

Under the two TARCH models (Model A and Model C), 2
1−tε  and 2

1−tσ  are found to be 

significant, suggesting the salient features of the time-varying volatility of BSE-100 stock 

returns. The 1
2

1 −− tt ξε  terms are found to be significant and positive, thereby indicating 

evidence of asymmetrical impact of good/ bad news on the stock returns. Under Model 

A, bad news is expected to increases the volatility from 0.087 to 0.087+0.169 = 0.256. 

Under Model C, the bad news increases volatility from 0.057 to 0.057+0.233=0.290. 

 

The terms |
1
1
−

−

t
t

σ
ε | and )ln( 2

1−tσ  in both the EGARCH models are found to be significant. 

Also the
1
1
−

−

t
t

σ
ε is found to be significant and negative, suggesting the existence of leverage 

effect on the stock returns.  

  

The 2R  both the two Model C and Model D are found to be maximum at 0.173. However, 

the AIC of Model C is found to be –5.854, which is lower than the AIC of the Model D, 

suggesting the superiority of Model C in explaining the return in BSE-100. This led to the 

adoption of Model C (Multivariate TARCH) to estimate the conditional volatility of daily 

return of BSE-100.  

 

 
 
 



Table-5: Estimated models for daily return – BSE 100 
 Model A Model B Model C Model D 
Conditional Mean equation 
C1 -0.001 

(0.013) 
+0.001 
(0.030) 

-0.004 
(0.029) 

-0.005 
(0.003) 

1−tr  +0.130 
(0.000) 

+0.141 
(0.000) 

+0.086 
(0.000) 

+0.096 
(0.000) 

3−tr  +0.076 
(0.001) 

+0.073 
(0.001) 

+0.061 
(0.005) 

+0.066 
(0.002) 

4−tr  +0.044 
(0.080) 

+0.031 
(0.201) 

+0.079 
(0.001) 

+0.085 
(0.000) 

log (FII_ total)   +0.001 
(0.038) 

+0.001 
(0.006) 

Overnight_ return   +0.720 
(0.000) 

+0.731 
(0.000) 

 
Conditional Variance equation 
C2 +1.29e-05 

(0.000) 
-0.858 
(0.000) 

+1.78 e-05 
(0.000) 

-1.101 
(0.000) 

2
1−tε  +0.087 

(0.000) 
 +0.057 

(0.006) 
 

2
1−tσ  +0.776 

(0.000) 
 +0.734 

(0.000) 
 

1
2

1 −− tt ξε  +0.169 
(0.000) 

 +0.233 
(0.000) 

 

  

| 
1
1
−

−

t
t

σ
ε | 

 +0.334 
(0.000) 

 +0.302 
(0.000) 

1
1
−

−

t
t

σ
ε   -0.106 

(0.000) 
 -0.148 

(0.000) 

)ln( 2
1−tσ   +0.930 

(0.000) 
 +0.900 

(0.000) 
 

2R  0.009 0.001 0.173 0.173 

AIC -5.716 -5.712 -5.854 -5.850 
Serial Correlation - LM 9.002 

(0.437) 
11.055 
(0.272) 

6.057 
(0.734) 

7.512 
(0.584) 

ARCH-LM 0.683 
(0.769) 

0.602 
(0.842) 

1.102 
(0.354) 

1.230 
(0.256) 

   

4.3. Model for S&P CNX-500: 

Table-6 presents the estimates of the four alternative models for S&P CNX-500. The 

Lagrange Multiplier (LM) test for residual serial correlation and ARCH-effects accepts 

the null hypothesis of lack of residual auto-correlation and ARCH-effect as suggested by 

the p-values, signifying the lack of specification error in the models formulation. The 

current return is found to be significantly influence by the previous-day return and also 

with a lag of three days. The overnight return is found to have significant impact on the 

daily return, as suggested by the significant by the p-values under the multivariate setup.  

However, we could not found any significant impact of the total FII transactions on the 

daily return of S&P CNX-500. 



 

Under the two TARCH models (Model A and Model C), 2
1−tε  and 2

1−tσ  are found to be 

significant, suggesting the salient features of the time-varying volatility of S&P CNX-500 

stock returns. The 1
2

1 −− tt ξε terms are found to be significant and positive, thereby 

indicating evidence of asymmetrical impact of good/ bad news on the stock returns. The 

|
1
1
−

−

t
t

σ
ε | and )ln( 2

it−σ  terms in both the EGARCH models are found to be significant. Also 

the
1
1
−

−

t
t

σ
ε is found to be significant and negative, suggesting the existence of leverage 

effect on the stock returns. Under Model A, bad news is expected to push up the 

volatility from 0.075 to 0.075+0.301 = 0.376. 

  

The AIC of Model C is found to be –5.918, which is lower than the AIC of the Model D, 

suggesting the superiority of Model C in explaining the return in S&P CNX-500. This led 

to the adoption of Model C (Multivariate TARCH) to estimate the conditional volatility of 

daily return of S&P CNX-500.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table-6: Estimated models for daily return – S&P CNX 500 
 Model A Model B Model C Model D 
Conditional Mean equation 
C1 +0.001 

(0.019) 
+0.001 
(0.001) 

-0.0004 
(0.142) 

-0.001 
(0.038) 

1−tr  +0.143 
(0.000) 

+0.154 
(0.000) 

+0.896 
(0.000) 

+0.080 
(0.001) 

2−tr    +0.092 
(0.000) 

 

3−tr  +0.055 
(0.019) 

+0.039 
(0.094) 

+0.052 
(0.033) 

+0.048 
(0.037) 

4−tr  +0.076 
(0.002) 

+0.067 
(0.009) 

 +0.054 
(0.030) 

Overnight_ return   +0.896 
(0.000) 

+0.881 
(0.000) 

 
Conditional Variance equation 
C2 +4.68e-05 

(0.000) 
-1.757 
(0.000) 

+1.25 e-05 
(0.000) 

-0.907 
(0.000) 

2
1−tε  +0.075 

(0.000) 
 +0.118 

(0.006) 
 

2
1−tσ  +0.582 

(0.000) 
 +0.761 

(0.000) 
 

1
2

1 −− tt ξε  +0.301 
(0.000) 

 +0.128 
(0.000) 

 

  

| 
1
1
−

−

t
t

σ
ε | 

 +0.360 
(0.000) 

 +0.326 
(0.000) 

1
1
−

−

t
t

σ
ε   -0.139 

(0.000) 
 -0.097 

(0.000) 

)ln( 2
1−tσ   +0.824 

(0.000) 
 +0.925 

(0.000) 
 

2R  0.004 0.003 0.221 0.221 

AIC -5.645 -5.637 -5.918 -5.911 
Serial Correlation - LM 3.831 

(0.872) 
4.860 

(0.770) 
8.349 

(0.499) 
9.283 

(0.324) 
ARCH-LM 0.67 

(0.78) 
0.34 

(0.98) 
1.064 

(0.387) 
1.235 

(0.250) 
4.4. Model for S&P CNX-Nifty: 

The estimated four alternative models for S&P CNX-Nifty are provided in Table-7. The 

Lagrange Multiplier (LM) test for suggests lack of residual serial correlation and ARCH-

effect. The current return is found to be significantly influence by the previous four days 

return and overnight return. The total FII transaction’s under Model D is found to have 

significant impact in determining the daily return.  

Under the two TARCH models (Model A and Model C), 2
1−tσ  are found to be significant, 

suggesting the salient features of the time-varying volatility of S&P CNX-Nifty stock 

returns. The 2
1−tε term is found to be significant under Model C. The term 1

2
1 −− tt ξε  in the two 

TARCH models are found to be significant and positive, thereby indicating evidence of 

asymmetrical impact of good/ bad news on the stock returns. Under Model A, bad news 



is expected to lead to an increase the volatility from 0.020 to 0.020+0.290 = 0.310. The 

volatility is expected to move up from 0.027 to 0.027+0.238=0.265 due to bad news 

under Model C. Similarly, under the two EGARCH models (Model B and Model D), the 

term
1
1
−

−

t
t

σ
ε  is found to be significant and negative, suggesting the existence of leverage 

effect on the stock returns.  

However, the AIC of Model D is found to be lowest than the other models, suggesting 

the superiority of Model D in explaining the return in the S&P CNX- Nifty prices. This led 

to the adoption of Model D (Multivariate EGARCH) to estimate the conditional volatility of 

daily return of S&P CNX-Nifty. 

Table-7: Estimated models for daily return – S&P CNX Nifty 
 Model A Model B Model C Model D 
Conditional Mean equation 
C1 +0.001 

(0.052) 
+0.001 
(0.084) 

+0.001 
(0.086) 

-0.004 
(0.028) 

1−tr  +0.130 
(0.000) 

+0.135 
(0.000) 

+0.121 
(0.000) 

+0.123 
(0.000) 

2−tr  -0.056 
(0.018) 

-0.055 
(0.022) 

-0.058 
(0.015) 

-0.059 
(0.014) 

3−tr  +0.091 
(0.000) 

+0.095 
(0.000) 

+0.072 
(0.002) 

+0.074 
(0.001) 

4−tr  +0.059 
(0.011) 

+0.056 
(0.016) 

+0.056 
(0.020) 

+0.052 
(0.032) 

Log (FII_ total)    
 

+0.001 
(0.012) 

Overnight_ return   +0.710 
(0.000) 

+0.696 
(0.000) 

 
Conditional Variance equation 
C2 +1.82e-05 

(0.000) 
-1.161 
(0.000) 

+1.57 e-06 
(0.000) 

-1.016 
(0.000) 

2
1−tε  +0.020 

(0.215) 
 +0.027 

(0.093) 
 

2
1−tσ  +0.748 

(0.000) 
 +0.772 

(0.000) 
 

1
2

1 −− tt ξε  +0.290 
(0.000) 

 +0.238 
(0.000) 

 

  

| 
1
1
−

−

t
t

σ
ε | 

 +0.295 
(0.000) 

 +0.267 
(0.000) 

1
1
−

−

t
t

σ
ε   -0.187 

(0.000) 
 -0.166 

(0.000) 

)ln( 2
1−tσ   +0.892 

(0.000) 
 +0.907 

(0.000) 
 

2R  0.009 0.008 0.035 0.0352 
AIC -5.812 -5.810 -5.8316 -5.8318 
Serial Correlation - LM 4.605 

(0.799) 
5.702 

(0.681) 
4.010 

(0.856) 
4.106 

(0.847) 
ARCH-LM 0.405 

(0.962) 
0.572 

(0.866) 
0.668 

(0.783) 
0.627 

(0.821) 
   



5. Some exploration of the conditional volatility: 
Generally, it is expected that the occurrence of volatilities in the equity market of a 

country should be reflected in all the indices in tandem. To test this hypothesis, whether 

the estimate of the volatilities in the indices as estimated by the TARCH/ EGARCH 

models move in tandem or not, one can perform statistical test either in the time-domain 

or frequency-domain. In such situation, results based on the frequency domain are 

expected to be more powerful than those based on the time domain. For our empirical 

analysis, we considered the estimated volatilities of the BSE-30 index and compare 

these with the volatilities of the two selected indices of NSE. 

To test this hypothesis, the spectral analysis has been performed. For the application of 

a spectral analysis it is desirable that all the series should possess the stationary 

property.  For a formal determination, whether volatilities of the three series BSE-30, 

S&P CNX-500 and S&P CNX-Nifty possess the stationary property or not, the unit root 

test are conducted applying the ADF test. The empirical results of the ADF test are 

reported in Table-8. The ADF- test rejects the null hypothesis of presence of unit-roots, 

i.e. the estimates of volatilities are stationarity in nature. 

 

Table 8: Unit Root Test of the estimate of volatilities 
Critical Value  Series ADF-test statistic 

5% 1% 
BSE-30 -10.596 -2.864 -3.437 
S&P CNX-500 -6.224 -2.864 -3.437 
S&P CNX-Nifty -6.940 -2.864 -3.437 
 
The spectral analysis between two variables can be analysed using squared coherence4 

and phase5. The cross-spectra between two variables reflect the importance of the 

relationship between the variables across all frequency6.  

                                                 
4 The squared coherence between two variables measures the degree to which the variables move together. 
It is analogous to the square of the correlation co-efficient at each frequency.  
5 The phase statistic measures the lead- lag relationship between two variables at each frequency. The 
phase conception is similar to the concept of Granger causality used in the time series analysis. 
 
6 Here the frequency 'w' is measured in radian, with π≤≤ w0  and each frequency corresponds to a 

periodicity of
w

period π2
= . Thus for quarterly data, the frequency w = 0.20 corresponds to a cycle of 

period 32-quarters, while the frequency w = 1.26 corresponds to a cycle of period 5- quarters. Thus if one 

assumes the periodicity of the business cycle to be in the range of 5 to 32- quarters, the corresponding 

frequency band for this will be between 0.20 and 1.26. 

 



Figure-5.1 and Figure-5.2 presents the squared coherence between the volatilities of 

BSE-30 with S&P CNX-500 and S&P CNX-Nifty respectively. The squared coherence of 

volatilities of BSE-30 with both the volatilities of the other two indices are found to be 

quite high at all frequencies, suggesting that the volatilities move together at all points of 

time.  

Figure-5.3 and Figure-5.4 presents the phase-statistic of the cross- spectrum between 

volatilities of BSE-30 with S&P CNX-500 and S&P CNX-Nifty respectively. The phase 

values between the volatilities of BSE-30 and S&P CNX-Nifty are found to be 

approximately zero at all frequency, implying that the volatilities of both the series move 

in tandem. However, some positive slopes were found between the volatilities of BSE-30 

and S&P CNX-500 at the high frequency range, suggesting the possibility of leading 

behavior of volatility of BSE-30 on S&P CNX-500. 

Thus both squared coherence and phase-statistic indicates the possession of similar 

characteristics between the volatilities of BSE-30 with S&P CNX-500 and S&P CNX-

Nifty, at all points of time. Thus the estimates of the volatilities for all the indices move in 

tandem. 

 

6. Conclusions: 
This paper explores to develop alternative models from the ARCH/ GARCH family to 

model the Indian equity markets. The equity market has been represented by the two 

widely traded stock exchanges in India – the Bombay Stock Exchange (BSE) and the 

National Stock Exchange (NSE). Two stock indices, from each of the exchanges are 

selected for empirical analysis. The widely quoted 30-script BSE Index (known as the 

SENSEX) and the BSE-100 script have been selected from the BSE. The two indices, 

S&P CNX-500 and S&P CNX-Nifty have been selected from the NSE. The sample 

covers daily observations from the beginning of January 2000 till the end of October 

2007. The stock returns are found to have possessed the asymmetrical property. 

Apart from using own past information, we have explored two indicators - total FII 

transactions and overnight changes in stock prices, to explain the return prices. 

Empirically, it has been found that these indicators contain information in explaining the 

return prices. The Threshold GARCH (TARCH) models are found to have explained the 

volatilities better for both the BSE Indices and S&P-CNX 500, while the Exponential 

GARCH (EGARCH) model is found to be superior for the S&P CNX-Nifty. Empirically, 

bad news, which can also be termed as contribution of certain negative factors, has also 



been found to have lead to an increase in the equity market. To test whether the 

volatilities for all the indices move in tandem or not, we performed the statistical tests in 

the frequency domain and found that the volatilities for all the indices move in tandem. 
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Figure-1: Daily return of stock prices 

Figure 1.1: Daily Return of BSE-30
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Figure 1.2:Daily Return of BSE-100
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Figure 1.3:Daily Return S&P CNX-500
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Figure 1.4:Daily Return of S&P CNX-Nifty
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Figure-2: Kernel Density of the return series 
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Figure-3: Estimates of Volatility of stock returns – TARCH/ EGARCH models 

Figure 3.1: Conditional volatility of BSE-30
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Figure 3.2:Conditional Volatility of BSE-100
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Figure 3.3: Conditional volatility of S&P CNX-500
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Figure 3.4: Conditional Volatility of S&P CNX-Nifty
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Figure-4: Estimates of Volatility of stock returns – Rogers- Satchell estimator 
Figure 4.1: Estimate of volatility of BSE-30 (Rogers-Satchell Est)
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Figure 4.2: Estimate of volatility of BSE-100 (Rogers-Satchell Est)
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Figure 4.3: Estimates of volatiliy of S&P CNX-500 (Rogers-Satchell est)
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Figure 4.4: Estimate of volatility of S&P CNX-Nifty (Rogers-Satchell est)
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Figure 5: Squared Coherence and Phase-Statistic between estimated volatilities 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Squared Coherence of volatility - BSE30 and S&P CNX-500

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 0.5 1 1.5 2 2.5 3

Frequency ->

Figure 5.2: Squared Coherence of volatility - BSE30 and S&P CNX  Nifty
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Figure 5.4: Phase Statistic betw een volatility of BSE30 and S&P CNX Nifty 
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Figure 5.3: Phase Statistic betw een volatility of BSE30 and S&P CNX-500
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