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Chapter 1

Simplified Version of Fuhrer’s (1994) Model

Reference: Fuhrer (1994) and Fuhrer (1997).

1.1 General Setup

The optimization problem is

where
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To make the simplified Fuhrer model fit this framework, let
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1.2 The Model Equations

1.2.1 IS curve

The IS curve, Fuhrer’s equation (1), is
Vil = a1y + Ry + 3141, (1.4)

which can also be expressed as
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1.2.2 Contracting Equation
Fuhrer’s equations (5), (7), and (8) are
pr = wxp + (I —w) x;—1 (1.6)
v = — pr) + (1 — o) (xr—1 — pr—1) (1.7)
Xr—pr =@ +yy)+ (1 —o) (Erverr + yEry1) + &pr (1.8)

Note that

Xt —pr =X —owx; — (1 —w) x4

= (1 —w) Ax;, (1.9)
which we use in (1.7) get

v =w(l —w) Ax, + (1 — w)> Ax,_;. (1.10)



Equation (1.8) can then be rewritten as
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Note from (1.4) that E;y;+1 = a1y; + a, R;, so the terms involving y; and E;y,; in

(1.12) can be written
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and note also that
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We can therefore write (1.12) as
_ . _
Yt
E/Axi41 = Ax | Ax;—1 |, where
R,
| Ax, a
-1 —yuo
A, = [ L - (w(ﬁi'w) + (1_ya,)2) - ] (1.14)
1.2.3 Arbitrage Condition
Quarterly inflation, expressed at an annual rate, is
e =4(pr — pr—1)
=4wAx; +4 (1 — w) Ax;_q, (1.15)

where we have used (1.6).



The arbitrage condition, Fuhrer’s equation (2), can then be written
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where A, is from (1.14).

1.2.4 Short Interest Rate
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Fuhrer specifies a reaction function which has a random shock attached. We want to find

the optimal reaction function.

1.3 Rewriting to Fit into the General Setup

From (1.5), (1.14), and (1.17) the transition equations can be written
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which corresponds to (1.2) in the general setup.
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Define the target variables as
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The loss function can then be written
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which corresponds to (1.1) in the general setup, where
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1.4 Simple Policy Rule
The policy rule is (inspired by Taylor) is
fi = 0.5m; + 0.5y;, (1.22)



and by using (1.15) this can be written
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