Session 9: The expected utility framework

Susan Thomas
http://www.igidr.ac.in/~susant
susant@mayin.org

IGIDR

Bombay

- How do humans make decisions when faced with uncertainty?
\square How can decision theory be used to solve problems of portfolio choice?

Decision making under uncertainty

- 'Ordinary' utility theory deals with problems like apples and oranges: Look for tangency of the budget constraint w.r.t. indifference curves.
- What is a comparable technology for dealing with uncertainty?

Historical introduction

First attempts

- One plausible theory:
"Humans behave asif they maximise $E(x)$ ".
- It appears reasonable to think that when faced with decisions, humans compute $E(x)$ and choose the option with the highest $E(x)$. For example, the NPV-based method of choosing between alternative cashflows.
- This proves to be an incomplete solution.

The St. Petersburg paradox

- You pay a fixed fee to enter a game.
- A coin will be tossed until a head appears.
- You win Rs. 1 if the head is on the 1st toss; Rs. 2 if on the 2nd, Rs. 4 if on the 3rd toss, etc.
- How much would you be willing to pay to enter the game?
(Posed by Daniel Bernoulli, 1738).
$-\operatorname{Pr}($ the first head appears on the k th toss) is:

$$
p_{k}=\frac{1}{2^{k}}
$$

$■ \operatorname{Pr}$ (you win more than Rs.1024) is less than 0.001 .

- BUT the expected winning is infinite!

$$
E=\sum_{k=1}^{\infty} p_{k} 2^{k-1}=\sum_{k=1}^{\infty} \frac{1}{2}=\infty
$$

- The sum diverges to ∞.
- No matter how much you pay to enter (e.g. Rs. 100,000), you come out ahead on expectation ${ }_{\text {v tramemem }-\mathrm{p}, 7}$

The paradox

- You or I might feel like paying Rs. 5 for the lottery.
\square But it's expected value is infinity.
- How do we reconcile this?

Expected utility hypothesis

- Theory:
"Humans behave asif they maximise $E(u(x))$ ".
- There is a fair supply of anomalies and paradoxes, but this remains our benchmark hypothesis.

John von Neumann and Oskar Morgenstern, 1946.

Characteristics of utility functions

Simple utility functions

Exponential $\quad U(x)=-e^{-a x} \quad a>0$
Logarithmic $U(x)=\log (x)$
Power $\quad U(x)=b x^{b} \quad b \leq 1, b \neq 0$. If $b=1$, it's riskneutral.

Quadratic

$$
\begin{array}{rl}
U(x)=x-b x^{2} & b>0 . \text { Is increas- } \\
& \text { ing only on } x< \\
& 1 /(2 b) .
\end{array}
$$

Equivalent utility functions

- Two utility functions are equivalent if they yield identical rankings in x.
- Monotonic transforms do not matter. Example:
- $U(x)=\log (x)$ versus
- $U(x)=a \log (x)+\log c$ is just a monotonic transform.

Hence, $V(x)=\log \left(c x^{a}\right)$ is equivalent to $U(x)=\log (x)$.

- Sometimes, it's convenient to force a monotonic transform upon a $U(x)$ of interest, in order to make it more convenient.

Expected utility hypothesis

Calculating expected utility

\square When the choice variable x is constant, then
$E(U(x))=U(x)$.

- When the choice variable x is a random variable, then $E(U(x))$ is driven by the PDF of x.
- If x has k outcomes, each with probability p_{k}, then

$$
E(U(x))=\sum_{1}^{k} p_{i} U\left(x_{i}\right)
$$

- Say, $U(x)=10+2 x-0.1 x^{2}$
$\square x$ has the following PDF:

x	$\mathrm{p}(\mathrm{x})$
-1	0.3
0.5	0.5
1	0.2

- What is $E(U(x))$?
$\square U(x)$ has the following PDF:

x	$\mathrm{p}(\mathrm{x})$	$\mathrm{U}(\mathrm{x})$
-1.0	0.3	7.90
0.5	0.5	10.98
1.0	0.2	11.90
$7.9+10.98 * 0.5+11.90 * 0.2=10.42$		

Risk aversion

- Definition: A utility function is risk averse on $[a, b]$ if it is concave on $[a, b]$. If U is concave everywhere, it is risk averse. U is concave if for all $0 \leq \alpha \leq 1$ and on any x, y in $[a, b]$:

$$
U(\alpha x+(1-\alpha) y) \geq \alpha U(x)+(1-\alpha) U(y)
$$

- Risk aversion: when expected utility across all possibilities is lower than utility of the expectation of all possibilities.
- Greater curvature is greater risk aversion; the straight line utility function is risk-neutral.

Concave utility functions

Certainty equivalence

The certainty equivalent C of a random lottery x is:

$$
U(C)=E(U(x))
$$

- Under a risk neutral utility function, $C=E(x)$;
- Under a risk averse utility function, $C<E(x)$; The greater the risk aversion, the greater the distance between C and $E(x)$.
NOTE: $U()$ has no units, but C can be nicely interpreted.

Example: $U(x)=a+b x$

If $x \sim N\left(\mu_{x}, \sigma_{x}^{2}\right)$, then
$\square E(x)=\mu_{x}$
\square
$U(E(x))=a+b \mu_{x}$
$\square(U(x))=E(a+b x)=a+b \mu_{x}$
$E(U(x))=E(x)$.
Here the choice result is the same as if the individual was maximising $E(x)$.
Therefore, a person with this utility function is risk-neutral.

Example: $U(x)=a+b x-c x^{2}$

If $x \sim N\left(\mu_{x}, \sigma_{x}^{2}\right)$, then

- $U(E(x))=a+b \mu_{x}-c \mu_{x}^{2}$
$\square E(U(x))=E\left(a+b x-c x^{2}\right)=a+b \mu_{x}-c\left(\sigma_{x}^{2}+\mu_{x}^{2}\right)$
- $E(U(x)) \neq U(E(x))$.

In fact, $U(E(x))>E(U(x))$.
A person with this utility function is risk-averse.

There is a significant literature on eliciting the risk aversion of a person.

- Ask the user to assign certainty equivalents to a series of lotteries. In principle, this can non-parametrically trace out the entire utility function.
- Choose a parametric utility function, in which case we are down to the easier job of just choosing the parameter values. Once again, the user can be asked to choose between a few lotteries.

Using expected utility hypothesis

Choosing between uncertain alterna-

\square Say, θ influences the pdf of a random outcome. For example, for a binomial distribution, $\theta=p$, the probability of success.

- The typical optimisation problem is that a person chooses a parameter θ.
■ How should the optimal value, θ^{*}, be chosen?
- When faced with choices θ_{1} and θ_{2}, the person picks θ_{1} iff $E U\left(\theta_{1}\right)>E U\left(\theta_{2}\right)$.
$■$ Therefore, the choice is made as:

$$
\theta^{*}=\arg \max E(U(x(\theta)))
$$

Example of using expected utility

\square An individual has the utility function
$U(x)=10+2.5 x$
■ $x_{1} \sim N(5.5,4.5)$

- $x_{2} \sim N(4.5,3.5)$
- Which of x_{1}, x_{2} would the individual choose?

Example of using expected utility

$$
\begin{aligned}
& \quad x_{1} \sim N(5.5,4.5) \\
& \quad E\left(U\left(x_{1}\right)\right)=10+2.5 \mu_{x_{1}}=10+2.5 * 5.5=23.75 \\
& \quad x_{2} \sim N(4.5,3.5) \\
& \quad E\left(U\left(x_{2}\right)\right)=10+2.5 \mu_{x_{2}}=10+2.5 * 4.5=21.25
\end{aligned}
$$

Since $E\left(U\left(x_{1}\right)>E\left(U\left(x_{2}\right)\right.\right.$, the individual would choose x_{1}.

Example of using expected utility

- Another individual has the utility function $U(x)=10+2.5 x-0.5 x^{2}$
■ $x_{1} \sim N(5.5,4.5)$
■ $x_{2} \sim N(4.5,3.5)$
- Which of x_{1}, x_{2} would the individual choose?

Example of using expected utility

$$
\begin{aligned}
& \square x_{1} \sim N(5.5,4.5), E\left(U\left(x_{1}\right)\right) \\
& \quad 10+2.5 \mu_{x_{1}}-0.5\left(\sigma_{x_{1}}^{2}+\mu_{x_{1}}^{2}\right) \\
& \quad 10+2.5 * 5.5-0.5\left(4.5+5.5^{2}\right)=6.38 \\
& x_{2} \sim N(4.5,3.5), E\left(U\left(x_{2}\right)\right) \\
& 10+2.5 \mu_{x_{2}}-0.5\left(\sigma_{x_{2}}^{2}+\mu_{x_{2}}^{2}\right) \\
& 10+2.5 * 4.5-0.5\left(3.5+4.5^{2}\right)=9.38
\end{aligned}
$$

Since $E\left(U\left(x_{2}\right)>E\left(U\left(x_{1}\right)\right.\right.$, this individual would choose x_{2}.

Non-corner solutions

- In the previous two examples, we forced the two individuals to choose either one or the other. These are called corner solutions to the optimisation problem.
- What if the two could choose a linear combination of the two choices, ie $\lambda x_{1}+(1-\lambda) x_{2}$ where $0>\lambda>1$?
- Assume that the covariance between $x_{1}, x_{2}=0$.
- For the risk neutral individual, $E\left(U\left(0.5 * x_{1}+0.5 * x_{2}\right)\right)$
$=10+2.5(0.5 * 5.5+0.5 * 4.5)=10+2.5 * 5.0=22.5$
- This is much less than the original solution of choosing x_{1}, where $E\left(U\left(x_{1}\right)=23.75\right.$ This person would choose x_{1} above any linear combination with x_{2}.
- Observation: risk-neutral individuals prefer corner solutions!

Example of a non-corner solution and risk-aversion: $\lambda=0.5$

- For the risk averse individual,

$$
\begin{aligned}
& E\left(U\left(0.5 * x_{1}+0.5 * x_{2}\right)\right) \\
&=10+2.5 * 5.0-0.2\left(\sigma_{0.5 x_{1}+0.5 x_{2}}^{2}\right) \\
&=10+2.5 * 5.0-0.5 * \frac{3.5+(4.5 * 4.5)+4.5+(5.5 * 5.5)}{4} \\
& \quad=15.19
\end{aligned}
$$

- This is much more than the original solution of choosing x_{2}, where $E\left(U\left(x_{2}\right)=9.38\right.$
This person would choose this linear combination above the corner solution of only x_{2} !
■ Observation: risk-averse individuals prefer non-corner solutions!

What is the optimal combination for a risk-averse individual?

In a world with
\square Several opportunities, x, with uncertain outcomes where

- Each x has a different $\operatorname{PDF} f(\theta)$,
- What is the optimal choice of the combination of x for the individual to maximise $E(U(x))$?
We are back to the original question posed in the last class - the Markowitz problem!

