Session 4: Samples and sampling distributions

Susan Thomas

http://www.igidr.ac.in/~susant

susant@mayin.org

IGIDR

Bombay

Session 4: Samples and sampling distributions - p. 1

Recap

- Probability and principles
- Random variables
- Probability distributions and densities
- Parameters of probability distributions and densities
- Data descriptors

The aim of this session

- 1. Samples and populations
- 2. Parameters vs. statistics
- 3. Sampling distribution of statistics
- 4. Central Limit Theorem
- 5. Estimating the population mean

Samples and populations

Samples

- A sample is a subset of the possible values for a RV.
- All the possible values is called the population.
- Samples are available; populations are not.
- Samples are used to infer characteristics of the population.
- A good sample is *representative* of the population, in terms of
 - 1. The values
 - 2. The frequency of the values

Example from a uniform distribution, u

The population is U(0,1).
u = Sample of size 25
In R, the command u = runif(25) generates a sample of 25 draws from U(0,1)

Histogram of u

Session 4: Samples and sampling distributions – p. 7

Histogram of *u*

Session 4: Samples and sampling distributions – p. 8

Summary statistics

	Population	Sample
Mean	1.000	0.504
Sigma	0.289	0.294
1 st Quartile	0.250	0.275
3 rd Quartile	0.750	0.792

Second sample from U(0,1) u2

The population is U(0,1).
u2 = Sample of size 25
In **R**, the command u2 = runif(25) generates a second sample of 25 draws from U(0,1)

Summary statistics

	Population	Sample1	Sample2
Mean	1.000	0.504	0.422
Sigma	0.289	0.294	0.203
1 st Quartile	0.250	0.275	0.311
3 rd Quartile	0.750	0.792	0.534

Third sample from U(0,1) *u*3

- The population is U(0,1).
- $\blacksquare u2 = \text{Sample of size } 2500^{\circ}$
- In R, the command u2 = runif(2500) generates a second sample of 2500 draws from U(0,1)

Summary statistics

	Population	Sample1	Sample2	Sample3
Mean	0.500	0.504	0.422	0.494
Sigma	0.289	0.294	0.203	0.289
1 st Quartile	0.250	0.275	0.311	0.237
3 rd Quartile	0.750	0.792	0.534	0.741

Statistics vs. Parameters

A numerical descriptive measure of a population is called a parameter.

For example, the bernoulli distribution has one parameter p, and the normal distribution has two parameters μ, σ .

- A quantity calculated from a sample set of observations of the RV is called a statistic.
- Parameters of a given distribution are constant.
- Statistics calculated for different samples from the same distribution are different they are random variables!

For example, the mean of a sample is a RV is a random variable.

Sampling distributions

Sampling distribution of sample statistics

- Like all RVs, sample statistics have probability distributions – these are called sampling distributions.
- The sampling distribution is the relative frequency distribution, theoretically generated by
 - 1. Repeatedly taking random samples (of size n) of the RV,
 - 2. Calculating the statistic for each sample
- Each sample used in generating the sampling distribution has to have the same number of observations.
- Therefore, the sampling distribution is generated for
 (a) a given statistic and (b) for a given sample size.

Examples of the sampling distribution of sample means, \bar{x}

Example1: n = 25, U(0,1)

We will create 100 samples to generate the sampling distribution of the mean from U(0,1), n = 25

- 1. Sample 1, S1 = runif(25)
- 2. Mean 1, m[1] = mean(S1)

Run 1. and 2. in a loop to get 100 values for the mean stored in m.

Analysing the generated data

Visually:

- 1. To get the histogram of the means: hist(m,breaks=20,freq=FALSE,col=5)
- 2. To superimpose the kernel density plot over the histogram: lines(density(m),col=2,lwd=4)

Numerically:

1. To get the mean, 1^{st} and 3^{rd} quartile: summary(m)

Example1: histogram of \bar{x} for U(0,1), n = 25

Session 4: Samples and sampling distributions – p. 20

Example1: Summary statistics of \bar{x}

	$ar{x}$
Mean	0.494
Standard deviation	0.061
1^{st} quartile	0.453
3^{rd} quartile	0.533

Example2: n = 25, N(0,1)

We will create 100 samples to generate the sampling distribution of the mean from N(0,1), n = 25

- 1. Sample 1, S1 = rnorm(25)
- 2. Mean 1, m[1] = mean(S1)

Run 1. and 2. in a loop to get 100 values for the mean stored in m.

Example2: histogram of \bar{x} of N(0,1), n = 25

Example2: Summary statistics of \bar{x}

	$ar{x}$
Mean	0.003
Standard deviation	0.199
1^{st} quartile	-0.131
3^{rd} quartile	0.136

Central Limit Theorem

Stating the CLT

If the sample size is sufficiently large,

- the sample mean \bar{x} has a sampling distribution that is approximately normal
- This is *irrespective* of the distribution of the underlying RV.

Properties of the sampling distribution of \bar{x}

If \bar{x} is the mean of a sample of RVs from a population with mean parameter μ and standard deviation parameter σ , then:

1. The mean of the sampling distribution of \bar{x} is called $\mu_{\bar{x}}$ and is equal to population μ .

$$\mu_{\bar{x}} = \mu$$

2. The standard deviation of the sampling distribution of \bar{x} is called $\sigma_{\bar{x}}$ and is a fraction of the population σ , as:

$$\sigma_{\bar{x}} = \sigma / \sqrt{n}$$

Where n is the size of the sample.

Session 4: Samples and sampling distributions – p. 27 $\,$

Recap

1. Population

- Parameters: μ, σ
- This distribution generates the underlying RV.
- 2. Sample of size *n*:
 - Statistics: $\bar{x}, \bar{\sigma}$
 - This is a feature of one sample.
- 3. Distribution of sample statistics from samples of size n
 - Sampling distribution parameters: $\mu_{\bar{x}}, \sigma_{\bar{x}}$
 - This is a frequency distribution from a set of samples all the same size.

Testing concepts

A small-town newspaper reported that for families in their circulation area, the distribution of weekly expenses for food consumed away from home has an average of Rs.237.60 and a standard deviation of Rs.50.40. An economist randomly sampled 100 families for their outside-home food expenses for a week.

1. What is the distribution of the mean weekly outside-home food expenses for the 100 families?

2. What is the probability that the sample mean weekly expenses will be at least Rs.252?

Testing concepts

A small-town newspaper reported that for families in their circulation area, the distribution of weekly expenses for food consumed away from home has an average of Rs.237.60 and a standard deviation of Rs.50.40. An economist randomly sampled 100 families for their outside-home food expenses for a week.

- 1. What is the distribution of the mean weekly outside-home food expenses for the 100 families? It should be approximately normal distributed, with $\mu_{\bar{x}} = Rs.237.60$, and $\sigma = 50.40/\sqrt{100} = 5.50$
- 2. What is the probability that the sample mean weekly expenses will be at least Rs.252? We convert N(0,1) distribution as
 z = 252 237.60/5.5 = 2.62. Then Pr(average expenses > 252) = Pr(z > 2.62) = 0.5 0.4956 = 0.004 sets of 4: Samples and sampling distributions p. 29

pling distributions

Say \bar{x}_{25} is the mean of a random sample of size 25 from a population of $\mu = 17, \sigma = 10$. Say \bar{x}_{100} is the mean of a sample of size 100 selected from the same sample.

- 1. What is the sampling distribution of \bar{x}_{25} ?
- 2. What is the sampling distribution of \bar{x}_{100} ?
- 3. Which of the probabilities, $P(15 < \bar{x}_{25} < 19)$ or $P(15 < \bar{x}_{100} < 19)$, would you expect to be larger?
- 4. Calculate the probabilities in the third question.

pling distributions

Say \bar{x}_{25} is the mean of a random sample of size 25 from a population of $\mu = 17, \sigma = 10$. Say \bar{x}_{100} is the mean of a sample of size 100 selected from the same sample.

- 1. What is the sampling distribution of \bar{x}_{25} ? Normal, $\mu_{\bar{x}_{25}} = 17, \sigma_{\bar{x}_{25}} = 2$
- 2. What is the sampling distribution of \bar{x}_{100} ? Normal, $\mu_{\bar{x}_{25}} = 17, \sigma_{\bar{x}_{100}} = 1$
- 3. Which of the probabilities, $P(15 < \bar{x}_{25} < 19)$ or $P(15 < \bar{x}_{100} < 19)$, would you expect to be larger? The latter.
- 4. Calculate the probabilities in the third question. At z = 1, area=0.3413, z = 2, area=0.4772. Thus the first is 0.6826, the second is 0.9544.

Problems to be solved

Q1: Sampling distribution parameters

Suppose a random sample of n = 100 is selected from a population with μ, σ as follows. Find the values of $\mu_{\bar{x}}, \sigma_{\bar{x}}$

 $\mu = 10, \sigma = 20$ $\mu = 20, \sigma = 10$ $\mu = 50, \sigma = 300$ $\mu = 100, \sigma = 200$

Q2: Sampling distribution probabilities

Suppose a random sample of n = 225 is selected from a population with $\mu = 70, \sigma = 30$. Find the following probabilities:

- **Pr**($\bar{x} > 72.5$)
- **Pr**($\bar{x} < 73.5$)
- $\Pr(69.1 < \bar{x} < 74.0)$
- $Pr(\bar{x} < 65.5)$

Q3: Tobacco company research

Research by a tobacco company says that the relative freq. distribution of the tar content of a new low-tar cigarette has $\mu = 3.9$ mg of tar and $\sigma = 1.0$ mg. A sample of 100 low-tar cigs are selected from one-day's production and the tar content is measured:

- What is Pr(mean tar content of the sample) is greater than 4.15mg?
- Suppose that the sample mean tar content works out to be $\bar{x} = 4.18$ mg. Based on the first question, do you think the tobacco company may have understated the tar content?
- If the tobacco company's figures *are* correct, then rationalise the observed value of $\bar{x} = 4.18$ mg.

Q4: Mean of an exponential RV

The length of time between arrivals at a hospital clinic and the length of service are two RVs that are important in designing a clinic, and how many doctors/nurses are needed there. Suppose the relative freq. dist. of the interarrival time (between patients) has a mean of 4.1 minutes and $\sigma = 3.7$ minutes.

- 1. A sample of 20 interarrival times are selected and \bar{x} the sample mean is calculated. What is the sampling distirbution of \bar{x} ?
- 2. What is the Pr(the mean interarrival time) will be less than 2 minutes in this sample?
- 3. What is the Pr(the mean interarrival time) of the sample will exceed 6.5 minutes?
- 4. Would you expect \bar{x} to be greater than 6.5 minutes? Explain.

Chapter 7,