Session 6: Financial market returns

Susan Thomas

http://www.igidr.ac.in/~susant

susant@mayin.org

IGIDR

Bombay

Session 6: Financial market returns – p. 1

Goals

The importance of returns
The distribution of returns
Value at Risk (VaR)

The importance of returns

Prices and returns

- All of us know the time-series of prices p_t .
- Finance requires a major shift in focus away from prices to the time-series of *returns*. For right now,

$$r_t = 100 \left(\frac{p_t}{p_{t-1}} - 1\right)$$

Why returns is the right way to think about finance

- Prices are not comparable across products.
- Prices can move dramatically for non-informative events: e.g. stock split.
- Most asset prices trend up, and it is not meaningful to talk about the distribution of something that is not stationary.

prices

Comparability comes by shifting to returns

The concept of returns is general!

Returns of equities, equity indexes, currencies, commodities: all are obvious.

Interest rates: Shift from thinking about interest rates to *returns* on bonds.

The distribution of returns

What do we know about prices

- Prices can move up and down,
- **But they can't become negative.**
- There can be very large positive moves.
- **But the returns can't be worse than -100%.**

The right parametrisation

$$r_t = 100 \log_e(p_t/p_{t-1})$$

- If $p_t \to 0$, then $r_t \to -\infty$.
- If there is a massive upswing in prices, $r_t \to +\infty$.
- Fact: p_t/p_{t-1} is roughly lognormal; r_t is roughly normal.

Raw versus continuously compounded returns

Fact: As $x \to 0$, $\log_e(1+x) \approx x$, so for small values of returns, $\log_e(1+r) \approx r$. Example: $\log_e(1.03) = .0295588.$

This can all be confusing!! 3% or 1.03 or 0.02955 or 2.955. Choose one way of measurement (2.955) and rigidly stick to it.

For weekly or monthly returns, values of *r* are bigger, so whether you log or not makes more of a difference. For small time horizons it matters less.

Looking at real-world returns

they? returns : now 'normal' are

summary statistics

	Nifty	S&P 500	INR/USD
$\mu_{\rm price}$	973.4384	742.0828	39.4443
$\sigma_{\rm price}$	300.4205	363.6260	5.9551
μ returns	0.0705	0.0622	0.0216
<i>σ</i> returns	1.9984	1.0008	0.2817
1 st Quartile	-0.9762	-0.4214	-0.0280
Median	0.0507	0.0622	0.0216
3 rd Quartile	1.1000	0.5719	0.0560

An across-markets view

2003-04 vol

Nifty	1.43
COSPI	1.47
1-year ZC bond	0.32
10-year ZC bond	0.47
GOI bond index	0.27
Gold	0.92
Silver	1.42
INR/USD	0.19
INR/EUR	0.77

Value at Risk (VaR)

Defining VaR

Suppose $r_t \sim f(r)$.

VaR v is a r_t defined in the following manner: VaR is the value v at a p level of significance using the equation

$$\int_{-\infty}^{v} f(r)dr = 1 - p$$

A 90% VaR on a standard normal distribution

A 90% vak on a normal distribution with Nifty parameters

Two CDFs and the 10% cutoff

References

- http://www.economagic.com has some useful data.
- http://www.mayin.org/ajayshah
- http://www.igidr.ac.in/~susant
- PHILIPPE JORION. Value at Risk : The Benchmark for Controlling Market Risk. McGraw Hill, 2000, 2nd edition