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Discrete RVs
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One discrete variable

X Pr(x)

0 0.2

1 0.2

2 0.6

1

Being a pdf, the probabilities are all ≥ 0 and add up
to one.

Knowing the pdf is the most you can know about X .
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The joint distribution of X and Y

Suppose an experiment consists of producing 2
random outcomes X and Y .

X assumes values 0, 1, 2. Y assumes values 0 and 1.

The joint distribution Pr(X = x, Y = y) shows all
probabilities of the events that can come about.

These correspond to statements
Pr((X = x)and(Y = y)).
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Joint distribution: Pr(X = x, Y = y)

Y

X 0 1

0 0 0.2

1 0.1 0.1

2 0.2 0.4

1

All the cells contain joint probabilities.

They add up to 1

This joint pdf is the most you can know about the
joint variation of X and Y . Session 7: Jointly distributed Random Variables – p. 6



Recovering Pr(X)

0 1

0 0 0.2

0.2

1 0.1 0.1

0.2

2 0.2 0.4

0.6

1

How to reduce from Pr(X = x, Y = y) to Pr(X)?

Addup all the ways in which you can get X = 2

Addup along the rows of the joint to get Pr(X)

Takes us back to the pdf of X = (0.2, 0.2, 0.6).
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Same idea for recovering Pr(Y )

0 1

0 0 0.2 0.2
1 0.1 0.1 0.2
2 0.2 0.4 0.6

0.3 0.7

1

Suppose we’re interested in Pr(Y = 1).

Y can be 1 in 3 different ways. Adding up, we get
0.7.

Similarly, we get Pr(Y = 0).

Now we know the full distribution of Y .
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“Joint” versus “Marginal” distribu-
tion

0 1

0 0 0.2

0.2

1 0.1 0.1

0.2

2 0.2 0.4

0.6

0.3 0.7

1

The joint distribution contains all knowable facts.
From the joint, we got the 2 univariate distributions.

Written in the margins of the table, so the name
“marginal” distributions.

The joint is the fundamental underlying information;
the marginals flow from that.
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Changing your mind as information
unfolds
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What do you know about Y ?

Suppose X and Y have this joint distribution.

Suppose I challenge you to make a statement about
Y .

What is the best that you can say?

You would say:

0 1

0.3 0.7

This is your best knowledge about Y .
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Suppose the outcome of X was un-
folded

0 1

0 0 0.2 0.2
1 0.1 0.1 0.2
2 0.2 0.4 0.6

0.3 0.7 1

You believe that the outlook for Y is (0.3, 0.7).

Suppose I told you X . Would it change your views
about the outlook for Y ?

Example: Suppose I told you X = 0

Now you know that Y = 0 just can’t happen!
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How your views change when infor-
mation unfolds

What is going on here is something remarkable!

You believed that Y was the pdf (0.3, 0.7)

I told you that X had come out to 0.

Now your beliefs about Y change; now your
“conditional pdf” is (0, 1), i.e. you now believe that
Y will come out to 1 with certainty.
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How to change our mind

It’s more important to be correct than to be
consistent.
– John Kenneth Galbraith

When the facts change, I change my mind. And
what do you do, Sir?
– John Maynard Keynes.

Probability gives us the scientific way to change our
minds when new information unfolds.

Research in psychology tells us that a common flaw
in human reasoning is to inadequately learn from
new data. Formal reasoning through probability
theory will help produce better decisions.
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The conditional probability

0 1

0 0 0.2 0.2
1 0.1 0.1 0.2
2 0.2 0.4 0.6

0.3 0.7 1

We start with knowing the marginal pdf.

Now I tell you X = 2.
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The pdf of Y once you know X = 2

0 1

0
1
2 0.2 0.4 0.6

Now nothing else in the pdf matters but one row.

You know that 0.2 and 0.4 convey the relative
weights of 0 versus 1.

But they don’t add up to 1 - so they do not make a
pdf.

So we divide each by 0.6 to make the probabilities
add up to 1.
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Pr(Y |X = 2)

Y 0 1

Pr(Y |X = 2) 0.333 0.666

This is the conditional probability of Y given
X = 2.
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Problem:

For the given joint of X,Y , compute the conditional
distribution Pr(X|Y = 1).

0 1 2

X 0.286 0.143 0.571

It is indeed different from (.2, .2, .6) so unfolding Y = 1
did change my mind.
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Generalising,

Conditional =
joint

marginal

i.e.

Pr(Y |X = x) =
Pr(Y = y,X = x)

Pr(X = x)
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Jargon

We write Pr(Y |X = 2) for the “conditional”
probability.

To emphasise the contrast, we call Pr(Y ) the
“unconditional” probability.

The terms “unconditional” and “marginal” mean the
same thing.

So you must be perfect in juggling the words:
joint,
marginal / unconditional,
conditional.
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Marvellous interpretation

Your views start out as the marginal / unconditional
of Y .

X unfolds.

Now your views shift to the conditional distribution
of Y .

The shift from the unconditional to the conditional
reflects your learning from the data for X .
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Note a consequence

Conditional =
joint

marginal

so

Conditional · marginal = joint

i.e.

Pr(Y |X = x) · Pr(X = x) = Pr(Y = y,X = x)
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Independence
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Independence

Suppose I tell you the outcome for X .

Suppose it does not change your views about Y .

Then X and Y are “independent”.

Example: If I tell you about tourist arrivals in
Montenegro, it doesn’t change your views about the
pdf of Nifty returns next year.
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Example

0 1

0 0.06 0.14 0.2
1 0.06 0.14 0.2
2 0.18 0.42 0.6

0.3 0.7 1

Work out the conditional Pr(Y |X = 2).

It is the same as the unconditional Pr(Y ).

Telling you that X = 2 changed nothing.

If, for all cases, the conditional is the same as the
unconditional, then you have independence.
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Independence

X and Y are independent
if and only if

Pr(X = x, Y = y) = Pr(X = x) · Pr(Y = y)
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Independence: Joint is product of
marginals

0 1

0

0.06 0.14

0.2
1

0.06 0.14

0.2
2

0.18 0.42

0.6

0.3 0.7 1

Compare against the example we used earlier –

0 0 0.2 0.2
1 0.1 0.1 0.2
2 0.2 0.4 0.6

0.3 0.7 1
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Independence: Joint is product of
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0 1

0 0.06 0.14 0.2
1 0.06 0.14 0.2
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Evaluating whether there is indepen-
dence

Operationally: For every cell in the joint, test whether the
joint is the product of the marginals.
If for even one cell, the test fails, then independence is
absent.
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Flipping between joint and marginals

If you know the joint, you can always compute the
marginals.

If you only know the marginals, in general, you
can’t recover the joint.

Only in one special case – independence – can this
reverse step happen.

If I tell you the two marginals, and if I tell you that
there is independence, then (and only then) you can
obtain the full joint.
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Summary
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What have we learned?

1. The joint distribution contains all knowable information.

2. Given a joint, we can always make the marginal pdf.

3. Given a joint, we can always make the conditional pdf.

4. Our belief shifts from marginal to conditional when

information unfolds.

5. Independence: When information unfolds and our beliefs don’t

change.

6. The marginals are enough to reconstruct the joint if and only if

there is independence.

7. Without independence, if you only know the marginals, there is

plenty that you don’t know.
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Next steps

We built this in the context of discrete pdfs.

This scales to continuous pdfs.
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Continuous RVs
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Continuous joint density functions

The joint distribution of two continuous RVs X,Y is
denoted as the joint probability density function:

f(X,Y )

The marginal of X from f(X,Y ) is calculated as:

fX(x) =

∫ ∞

−∞

f(X,Y )dY

The conditional density function of X|Y = y is:

fX|Y =y(x|Y = y) = f(X = x, y)/

∫ ∞

−∞

f(X,Y )dX
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Example: Conditional joint density
functions

f(x, y) =
6xy(2 − x − y) 0 < x < 1, 0 < y < 1

0 otherwise

What is the conditional density function of
(X|Y = y)?

fX|Y (x|y) =
f(x, y)∫ 1

0 6xy(2 − x − y)dx

=
6x(2 − x − y)

(4 − 3y)
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Summary statistics
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Conditional expectation and vari-
ance

E(X|Y = y), σ2
(X|Y =y)

In order to calculate the mean and the variance, we
need to calculate the conditional density function.

Once the conditional density function is calculated,

E(X|Y = y) =

∫
xf(x, y)dX

V ar(X|Y = y) =

∫
x2f(x, y)dX
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Covariance

Covariance between any pair of RVs (X,Y ) is
defined as:

Cov(X,Y ) = E[(X − µX)(Y − µY )]

= E[XY ] − µXµY
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Covariance and correlation

Covariance can be any number between ∞,−∞.

A standardised form of covariance is correlation.
This is typically denoted as ρxy and is calculated as:

ρxy =
Cov(X,Y )

σXσY

Correlations can be any number between -1 and 1.
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Example: Discrete Covariance

Y

X 0 1

0 0 0.2
1 0.1 0.1
2 0.2 0.4

1
What is Cov(X,Y)?
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Solution: Discrete Covariance

Cov(X,Y) = E(XY) - µXµY

E(XY) :

XY 0 1 2

0.5 0.1 0.4

1. E(XY) = 0*0.5 + 1*0.1 + 2*0.4 = 0.9
2. µX = 0*0.2 + 1*0.2 + 2*0.6 = 1.4
3. µY = 0*0.3 + 1*0.7 = 0.7

Cov(X,Y) = 0.9 - 1.4*0.7 = -0.08
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Mean and variance of (X + Y )

E(X+Y) = E(X) + E(Y)

Var(X+Y) = E[((X + Y ) − E(X + Y ))2]

= E[(X − E(X) + Y − E(Y ))2]

= E[(X − E(X))2] + E[(Y − E(Y ))2] +

2E[(X − E(X))(Y − E(Y ))]

= V ar(X) + V ar(Y ) + 2Cov(X,Y )
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Mean and variance of the returns of
a 2-stock portfolio

The portfolio has funds V . Out of this, w% of funds
invested in S1, (1−w)% invested in S2. S1 has returns r1

which is distributed as N(µ1, σ
2
1). S2 has returns

r2 ∼ N(µ1, σ
2
2).

Portfolio returns: rp = wr1 + (1 − w)r2

Expected returns: E(wr1 + (1 − w)r2) =
wµ1 + (1 − w)µ2

Variance: σ2
p = Var(wr1 + (1 − w)r2)

σ2
p = w2var(r1) + (1 − w)2var(r2) + w(1 − w)cov(r1, r2)

= w2σ2
1 + (1 − w)2σ2

2 + w(1 − w)ρ(r1, r2)σ1σ2
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Problems
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Problem 1: Calculating correlations

Y

X 0 1

0 0 0.2
1 0.1 0.1
2 0.2 0.4

1
What is ρ(X,Y )?
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Problem 2: Portfolio returns and
variance

Two stocks (A and B), into which I put equal amounts of
money, have the following mean and returns.

Expected σ

return (%) (%)

A 15 15
B 12 9

The correlation between the two stocks returns is
ρa,b = 0.333.

1. What is the expected rate of return on my portfolio?

2. What is it’s standard deviation?
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