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Portfolio optimisation
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Definitions

Asset: an instrument that can be easily traded

Rate of return, r:
Amount received−Amount invested

Amount invested
To get closer to normality,

rt = log(Pt/Pt−1)

In a world with normal random variables, returns on
one asset is the random variable such that:

r ∼ N(µr, σ
2

r)

For a pair of normal random variables, (r1, r2):
covariance σr1r2

, correlation coefficient ρr1r2
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Defining a two-asset portfolio

We have two assets, A,B, which have returns
defined as rA ∼ N(µA, σ2

A), rB ∼ N(µB, σ2

B).
They have a covariance of σAB and a correlation
coefficient ρAB.

The portfolio is defined as a set of weights, which is
the fraction invested in each asset: wA, wB

(wB = 1 − wA)

With this information, we can calculate:

rp = wArA + wBrB

σ2

p = w2

Aσ2

A + w2

Bσ2

B + 2wAwBσAB
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Matrix notation

We can re-write the portfolio definition as follows:

Portfolio = ~w′ = (wA, wB)

Asset returns = ~r′ = (rA, rB)

Asset variance-covariance matrix = Σ
[

σ2

A σAB

σAB σ2

B

]
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Re-expressing portfolio returns and
variance

Portfolio returns, rp

~w′~r = [wAwB]

[

rA

rB

]

= wArA + wBrB

Portfolio variance, σ2

p

~w′Σ~w = [wAwB]

[

σ2

A σAB

σAB σ2

B

] [

wA

wB

]

= w2

Aσ2

A + 2wAwBσAB + w2

Bσ2

B
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Generalising to an n-asset portfolio

n-asset portfolio: ~w = (w1, w2, w3, . . . , wn)

There are n assets, each of which are normally
distributed as N(µi, σ

2

i ).

Each asset i has a covariance with another asset j of
σij .

Therefore, the assets are multivariate normally
(MVN) distributed as:

∼ N
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Returns and variance of an n-asset
portfolio

rp = ~w′~µ

= (w1, w2, . . . , wn)
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Values of wis

There is a restriction in the values of the weights:

i=n
∑

i=1

wi = 1

Short sale, wi < 0: When you sell an asset that you
do not own, the weight becomes negative.
(So there can be a combination of some weights
such that their sum is greater than one if short sales
is allowed.)

In India, short sales on assets are prohibited.
Today, we trade futures on individual stocks as well
as the index. We can “implement” short sales by
selling futures. Session 8: The Markowitz problem – p. 9



Example: Portfolio mean and vari-
ance calculation

r1 ∼ N(0.12%, 0.20%).

r2 ∼ N(0.15%, 0.18%).

σ1,2 = 0.01.

~r = (0.0012, 0.0015)

Σ =

(

0.20% 0.01%

0.01% 0.18%

)

Portfolio p, ~wp = (0.25, 0.75)

What is rp, σ
2

p?
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Solution to the portfolio mean and
variance

rp = ~w′

pµp

0.25 ∗ 0.12 + 0.75 ∗ 0.15 = 0.1425

σ2

p = ~w′

pΣ~wp

= (0.252
∗ 0.202) + (0.752

∗ 0.182) + 2 ∗ (0.25 ∗ 0.75 ∗ 0.01)

= 0.024475

σp = 0.15644

Note: The variance on the portfolio is much lower than
the variance on either asset – diversification.
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Issues in diversification

Diversification is the reduction in variance of the
portfolio returns by :

1. Holding a large number of assets, such that the
weights on each become smaller and smaller.
The effect of asset i in the portfolio variance is w2

i .
The smaller is w2

i , the more the impact on the
reduction in variance.

2. Holding uncorrelated assets
The lower the correlation, the higher the
diversification impact.
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Markowitz’s question

If the underlying n assets are MVN, then every
portfolio maps to some portfolio return RV which is
normal.

If a portfolio is a linear combination ~w of the assets,
there will be a very large number of them.

How do we find “good” portfolios?

Markowitz posed this question:
For every level of E(w′µ), how can we find the
lowest possible w′Σw?

The dawn of modern finance which ended in a
Nobel prize.
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Optimisation problem for a two-asset
universe

Problem: Given two assets, A and B, and their known
characteristics, how should an investment amount V0 be
portioned such that the investment is optimal?
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Solution to the two-asset problem

Take random values of wa and calculate the return and variance

corresponding to a given wa to get the following graph:

Each point is a wa, wb pair: given an E(rp), we pick that wb such that
the variance is minimised.
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Portfolio diagram for an n–asset uni-
verse

Problem: Given n assets and their known characteristics,
how should an investment amount X0 be portioned such
that the investment is optimal?
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Solution to the n-asset portfolio prob-
lem

Solution: Find weights w1, . . . wn and calculate
E(rp), σ

2

p for each ~w. The mean–variance graph will
look like:
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The optimal portfolio in an n–asset
universe

With at least three assets, the feasible region is a 2-D
area.

The area is convex to the left – ie, the rise in r̄ is
slower than the increase in σ.

The left boundary of the feasible set is called the
portfolio frontier or the minimum variance set.

The portfolio with the lowest value of σ on the
portfolio frontier is called the minimum–variance
point (MVP).
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The portfolio frontier

With all risky assets, we get a portfolio frontier
which gives a set of portfolios with the smallest
variance for a given expected return.

Next problem: how do I know which suits me best?

Solution: Utility theory
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