Session 8: The Markowitz problem

Susan Thomas
http://www.igidr.ac.in/~susant
susant@mayin. org

IGIDR

Bombay

Portfolio optimisation

Definitions

\square Asset: an instrument that can be easily traded
\square Rate of return, r :
Amount received-Amount invested Amount invested

- To get closer to normality,

$$
r_{t}=\log \left(P_{t} / P_{t-1}\right)
$$

- In a world with normal random variables, returns on one asset is the random variable such that:

$$
r \sim N\left(\mu_{r}, \sigma_{r}^{2}\right)
$$

- For a pair of normal random variables, $\left(r_{1}, r_{2}\right)$:

Defining a two-asset portfolio

\square We have two assets, A, B, which have returns defined as $r_{A} \sim N\left(\mu_{A}, \sigma_{A}^{2}\right), r_{B} \sim N\left(\mu_{B}, \sigma_{B}^{2}\right)$. They have a covariance of $\sigma_{A B}$ and a correlation coefficient $\rho_{A B}$.

- The portfolio is defined as a set of weights, which is the fraction invested in each asset: w_{A}, w_{B}
$\left(w_{B}=1-w_{A}\right)$
\square With this information, we can calculate:

$$
\begin{aligned}
r_{p} & =w_{A} r_{A}+w_{B} r_{B} \\
\sigma_{p}^{2} & =w_{A}^{2} \sigma_{A}^{2}+w_{B}^{2} \sigma_{B}^{2}+2 w_{A} w_{B} \sigma_{A B}
\end{aligned}
$$

Matrix notation

We can re-write the portfolio definition as follows:
\square Portfolio $=\overrightarrow{w^{\prime}}=\left(w_{A}, w_{B}\right)$

- Asset returns $=\vec{r}^{\prime}=\left(r_{A}, r_{B}\right)$
\square Asset variance-covariance matrix $=\Sigma$

$$
\left[\begin{array}{cc}
\sigma_{A}^{2} & \sigma_{A B} \\
\sigma_{A B} & \sigma_{B}^{2}
\end{array}\right]
$$

Re-expressing portiolio returns and variance

- Portfolio returns, r_{p}

$$
\begin{aligned}
\vec{w}^{\prime} \vec{r} & =\left[w_{A} w_{B}\right]\left[\begin{array}{l}
r_{A} \\
r_{B}
\end{array}\right] \\
& =w_{A} r_{A}+w_{B} r_{B}
\end{aligned}
$$

- Portfolio variance, σ_{p}^{2}

$$
\begin{aligned}
\vec{w}^{\prime} \Sigma \vec{w} & =\left[w_{A} w_{B}\right]\left[\begin{array}{cc}
\sigma_{A}^{2} & \sigma_{A B} \\
\sigma_{A B} & \sigma_{B}^{2}
\end{array}\right]\left[\begin{array}{l}
w_{A} \\
w_{B}
\end{array}\right] \\
& =w_{A}^{2} \sigma_{A}^{2}+2 w_{A} w_{B} \sigma_{A B}+w_{B}^{2} \sigma_{B}^{2}
\end{aligned}
$$

Generalising to an n-asset portfolio

$\square n$-asset portfolio: $\vec{w}=\left(w_{1}, w_{2}, w_{3}, \ldots, w_{n}\right)$
\square There are n assets, each of which are normally distributed as $N\left(\mu_{i}, \sigma_{i}^{2}\right)$.
\square Each asset i has a covariance with another asset j of $\sigma_{i j}$.

- Therefore, the assets are multivariate normally (MVN) distributed as:

$$
\sim \mathbf{N}\left[\left(\begin{array}{c}
\mu_{1} \\
\mu_{2} \\
\cdots \\
\mu_{n}
\end{array}\right),\left(\begin{array}{cccc}
\sigma_{1}^{2} & \sigma_{12} & \ldots & \sigma_{1 n} \\
\sigma_{21} & \sigma_{2}^{2} & \ldots & \sigma_{2 n} \\
\cdots & \cdots & \cdots & \cdots \\
\sigma_{n 1} & \sigma_{n 2} & \ldots & \sigma_{n}^{2}
\end{array}\right)\right]
$$

returns and variance or an n-asset portfolio

$r_{p}=\vec{w}^{\prime} \vec{\mu}$

$$
=\left(w_{1}, w_{2}, \ldots, w_{n}\right)\left(\begin{array}{l}
\mu_{1} \\
\mu_{2} \\
\ldots \\
\mu_{n}
\end{array}\right)
$$

$\square \sigma_{p}^{2}=\vec{w}^{\prime} \sum \vec{w}$

Values of $w_{i} \mathrm{~S}$

\square There is a restriction in the values of the weights:

$$
\sum_{i=1}^{i=n} w_{i}=1
$$

\square Short sale, $w_{i}<0$: When you sell an asset that you do not own, the weight becomes negative. (So there can be a combination of some weights such that their sum is greater than one if short sales is allowed.)

- In India, short sales on assets are prohibited. Today, we trade futures on individual stocks as well as the index. We can "implement" short sales by selling futures.

Example: Portiolio mean and variance calculation

$\square r_{1} \sim N(0.12 \%, 0.20 \%)$.
$\square r_{2} \sim N(0.15 \%, 0.18 \%)$.
$\square \sigma_{1,2}=0.01$.
$\square \vec{r}=(0.0012,0.0015)$
$\square \Sigma=\left(\begin{array}{ll}0.20 \% & 0.01 \% \\ 0.01 \% & 0.18 \%\end{array}\right)$
\square Portfolio $p, \vec{w}_{p}=(0.25,0.75)$
\square What is r_{p}, σ_{p}^{2} ?

Solution to the portiolio mean and

 variance$$
\begin{aligned}
& \quad r_{p}=\vec{w}_{p}^{\prime} \mu_{p} \\
& \quad 0.25 * 0.12+0.75 * 0.15=0.1425 \\
& \sigma_{p}^{2}=\vec{w}_{p}^{\prime} \Sigma \vec{w}_{p} \\
& =\left(0.25^{2} * 0.20^{2}\right)+\left(0.75^{2} * 0.18^{2}\right)+2 *(0.25 * 0.75 * 0.01) \\
& =0.024475 \\
& \sigma_{p}=0.15644
\end{aligned}
$$

Note: The variance on the portfolio is much lower than the variance on either asset - diversification.

Issues in diversification

Diversification is the reduction in variance of the portfolio returns by :

1. Holding a large number of assets, such that the weights on each become smaller and smaller. The effect of asset i in the portfolio variance is w_{i}^{2}. The smaller is w_{i}^{2}, the more the impact on the reduction in variance.
2. Holding uncorrelated assets The lower the correlation, the higher the diversification impact.

Markowitz's question

\square If the underlying n assets are MVN, then every portfolio maps to some portfolio return RV which is normal.

- If a portfolio is a linear combination \vec{w} of the assets, there will be a very large number of them.
- How do we find "good" portfolios?
- Markowitz posed this question:

For every level of $E\left(w^{\prime} \mu\right)$, how can we find the lowest possible $w^{\prime} \Sigma w$?

- The dawn of modern finance which ended in a Nobel prize.

Optimisation problem for a two-asset

 universeProblem: Given two assets, A and B, and their known characteristics, how should an investment amount V_{0} be portioned such that the investment is optimal?

Solution to the two-asset problem

Take random values of w_{a} and calculate the return and variance corresponding to a given w_{a} to get the following graph:

Each point is a w_{a}, w_{b} pair: given an $\mathrm{E}\left(r_{p}\right)$, we pick that w_{b} such that the variance is minimised.

Portiolio diagram for an n-asset uni-

verse

Problem: Given n assets and their known characteristics, how should an investment amount X_{0} be portioned such that the investment is optimal?

Solution to the n-asset portiolio prob-

 lemSolution: Find weights $w_{1}, \ldots w_{n}$ and calculate $E\left(r_{p}\right), \sigma_{p}^{2}$ for each \vec{w}. The mean-variance graph will look like:

The optimal portiolio in an n-asset universe

- With at least three assets, the feasible region is a 2-D area.
- The area is convex to the left - ie, the rise in \bar{r} is slower than the increase in σ.
\square The left boundary of the feasible set is called the portfolio frontier or the minimum variance set.
- The portfolio with the lowest value of σ on the portfolio frontier is called the minimum-variance point (MVP).

The portfolio frontier

- With all risky assets, we get a portfolio frontier which gives a set of portfolios with the smallest variance for a given expected return.
\square Next problem: how do I know which suits me best?
- Solution: Utility theory

