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Recap

The Markowitz framework: efficient portfolios in
E(r), σ space. Given E(r), choose the portfolio
with the lowest σ.

One fund separation theorem: assuming rational
investors, and low transaction, any investor will
choose a portfolio allocation of part rf and part rM ,
the market portfolio.

CAPM: Given E(r), choose the portfolio with the
lowest β because the returns are only for systematic
risk that cannot be diversified away.

We seem to have come to (a) an allocation solution and
(b) a pricing solution. How do we implement this?
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Estimation of input variables
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List of input variables

E(r)

Σ, which is a set of
individual asset σ2

i , and
covariance terms σi,j .

E(rM), σM

β of individual assets with benchmark indexes
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Expected returns for securities
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Expected returns

Sources for estimates of E(r) are:

Historical returns data for the individual asset

β times the historical expected returns on the index

Questions about the data:

Over what time interval?

How long is good enough?

What is the standard error of our estimate?
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Problems with historical estimates of
E(r)

We only have samples.

Each sample gives an estimate, with a standard error.

At high frequencies (such as daily data), the mean
estimate tends to be smaller than it’s σ.

With more data, the σ tends to go down only by
√

n.

Thus, the uncertainty of the estimate reduces very
slowly with more data.
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Example of E(r) estimation problems

Nifty daily returns has an average of around 15 bps,
and σ = 1.5%
The 95% confidence interval is ±4.5%. The
uncertainty is much larger than the mean itself.

This was calculated using the last three years of data
(∼ 750 trading days). How many more data points
would we need to drop the range of this interval?

If I had 10 years of data, the σ would drop by 50
times to around 30 bps.

If I had 100 years of data, σ would drop to around 9
bps.

With 1000 years of data, σ would drop to 4 bps
which is beginning to be manageable.
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E(r) estimates using β and E(rm)

Use ri = rf + β(rm − rf) + εi to estimate
E(ri) = rf + β(E(rm) − rf). This is called the “market
model” estimation.

A superior path: E(rm) tends to be far less noisy
than E(r) for individual stocks.

Further, β is a covariance estimate.
Covariances tend to be more stable estimators than
averages. Therefore, σ of E(r) calculated using the
market model would tend to be less noisy than using
historical data.
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Generalised modelling approach to
estimating E(r)

In general, say ri = rmodel + εi.

In the market model rmodel = β(rm − rf).

There are other models, such as the Arbitrage
Pricing Theory, that model ri =

∑
wifi + εi.

Here, fi are some observable factors. For instance,
the first factor in typical APT models for stocks is
rm.
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Time series dependance as a source
of “noise”

Typically, the high level of σ in financial variables is
caused by time series dependance – ie, yesterday’s
returns affect today’s returns to a certain amount.
If we account for this dependance, then σ tends to be
lower.

The time series dependance can be modelled to
remove some of the noise in σ and therefore, E(r).

In the generalised model for ri, this might be
modelled as fi being the previous day’s returns or ε,
or σ.
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Estimating the variance–covariance
matrix for a securities portfolio
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Estimates of variances and covari-
ances

1. Historical estimates

2. Market model estimates

3. Realised volatility

4. Implied volatility
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Historical estimates of variances and
covariances

The most widely used estimates are based on
historical data.

For example, daily variance of A can be calculated
by
1. Calculating a vector of daily returns for A,B, ~rAd

, ~rBd

2. Daily σ2

Ad
: 1

T

∑
T

i=1
(rAdi

− µrd
)2

3. Daily σ2

ABd
: 1

T

∑
T

i=1
(rAdi

− µAd
)(rBdi

− µBd
)
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Scaling to variances at lower fre-
quencies

Monthly σ2

Am
can be calculated in two ways:

1. Calculate a monthly returns vector, ~rAm
. Then we use the

above formula to calculate σ2

Am
.

2. Scale from daily to monthly variance: σ2

Am
= 25 ∗ σ2

Ad
Here we

make two assumptions:

(a) There are 25 trading days in a month.

(b) The returns are independant and normally distributed.

Under these assumptions, we can formulate a general rule

for scaling up from a one-day estimate to an n−day

estimate as σ2

An
= n ∗ σ2

Ad
.

Question: Which method do we choose for σm?
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Cautionary note

We use less information when we use monthly returns. T data

points of daily data means only T/25 points of monthly return.

We need independance when using σd to calculate σm.

However, most asset returns have some amount of serial

dependance: there is some amount of information that flows

from the previous day’s returns to the current returns.

1. If the serial dependance is insignificant, then scaling from

σd to σm is efficient.

2. If not, scaling using σd will give us an over-estimate of the

true σm.
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Market model estimates

The market model can be applied here as well. For
example,

σ2

A = β2

Aσ2

m + σ2

εA

σAB = βAβBσ2

m + ρεAεB
σεA

σεB

have been shown to be more robust estimates of σAB

than those estimated from historical data.

Compared with historical data estimates of E(r),
these tend to be less noisy.
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Realised volatility

Use intra-day price data to calculate high–frequency
returns for stock A.
For example, we can calculate returns at every 5
minutes for Reliance.

If we generate 5-minute returns, they can be used to
calculate σ2

A5mins
.

σ2

Ad
= 66 ∗ σ2

A5mins

This is called the daily realised volatility of A.

Note that this can also be used to get a good estimate
of the volatility of any single day.
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Pros and cons of using realised
volatility

Realised volatility has been found to be a better
estimator of daily volatility than using daily data.

It is found to be a better estimator of a single day’s
volatility than even the high-low estimator.

The problems of serial correlation is higher for
intra-day data than for daily data.
The effects of serial correlation has to be removed
before this estimator can be used.
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Implied volatility

If a liquid options market exists for a stock, then the option

price can be used to estimate the annualised volatility of the

stock – called the implied volatility.

This is calculated using a recursive search algorithm (like the

Newton–Raphson) on the Black-Scholes equation, with the

option premium from the market as input.

It is one of the best direct estimators of future volatility.

However, the observed behaviour is that options with different

maturities and different strikes give different estimates of the

implied volatility of a stock. There is as yet no consisent

framework to identify which is the best one.
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Expected returns on the market
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Estimating the expected market re-
turns

E(rM) is an important variable in pricing securities
as well as portfolio optimisation.

The most simple estimate used is the historical
average of market index returns.

Two problems with this estimate:
1. It is a historical average – it need not be repeated

into the future.
2. The current historical average might be lower

than the current risk free rate, rf !
This is not consistent with our notion that risky
assets have to have a positive risk premium.
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Equity premium

The alternative: Use the equity premium added to
the risk–free rate.
1. The equity premium is the returns of the market

over the risk-free rate.
2. It is calculated as the average of the excess return

of the market over a period of time.
3. For every date, t, calculate ẽM,t = (RM,t − rf,t).

The equity premium Eeqprem =
∑T

i=1
eM,t/T

Then, E(rM) = Eeqprem + rf
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Problems with the above approach

There is no adjustment for a risk factor in the above
equation.

Merton, 1980 “On estimating the expected return on
the market”, published in Journal of Financial
Economics

Several models incorporate various economic factors
to accurately capture the risk factor in equity
investment.

This is ongoing research.
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Estimating the stock β
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The market model

A stock β is estimated using a market model.

For a particular j, the market model is:

rj,t = αj + βj(rM,t − rf,t) + εt

Here βj can be estimated using a linear regression
solution.

It can also be worked out that βj = cov(rj, rM )/σ2

rM

Once cov(rj, rM ) and σ2

rM
is estimated, βj can be

simply calculated.
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Pros and cons

βj captures the leverage in a firm.

If the firm’s leverage changes, βj changes.

Empirically, it is observed that βj is not a constant.

Need to build models for estimating the time series
behaviour of βj .
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Problems
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Q1: Returns at different intervals

Take three stock prices returns for the last five years. Additionally,

get the three-month interest rates as well as the INR-USD returns

over the same five year period.

For each of these series, calculate the historical µ and σ. Do

this for daily data.

Using the daily returns µd and σd, compute what the monthly

µm and σm for each of these series ought to be. Next, calculate

monthly data for the five price series and calculate the monthly

µmd and σmd from the monthly returns data. How do they

compare – are they the same? Why not?

If you were to create monthly E(r),Σ for a portfolio

containing these five assets, which path would you choose –

calculate monthly estimates from monthly data or from daily

data? Why?
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Q2: Returns at different intervals

For the three stock prices returns used in the previous question,

Calculate the variance-covariance matrix using historical data

for the last one year, the last two years, the last three years.

Are these numbers stable over time, or do they fluctuate

significantly?

Calculate the variance-covariance matrix using the market

model over the same time periods.

How do these estimates perform in comparison to those

estimated using historical data? Which do you think are better?

(NOTE: You can get estimates of β for most stocks either from

the CMIE Prowess database, or if they are from the Nifty/Nifty

Jr. set, from the NSE website.)
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