A course on applied statistics for finance practitioners

Susan Thomas *

May 2003

1 Pre-requisites

- Fluency with algebra and analytic geometry
- You can differentiate $f(x) = x \sin(x)$ and integrate f(x) = x * x.
- Notions of maximisation using calculus.
- You know what is an option: American versus European, Call versus Put.
- You know what an option delta means.
- You what is put-call parity and why it works.
- \bullet In short, you must have good 12^{th} standard mathematics, good practical knowledge of finance.

Books used in the course of the lectures: *Introduction to probability models*, by Sheldon Ross. *Investment Science*, by David Leunberger.

^{*}Susan Thomas is Assistant Professor at the Indira Gandhi Institute of Development Research. She can be reached at susant@mayin.org, URL http://www.igidr.ac.in/~susant

2 The Syllabus

- 1. Axioms of probability (Ross chapter 2)
- 2. Conditional probability and independence (Ross chapter 3)
- 3. Random variables RVs (Ross chapter 4)
- 4. Continuous RVs (Ross chapter 5)
- 5. Introduction to returns
 - Defining returns.
 - Normal versus lognormal.
 - Concept of Value at Risk VAR a percentile point off a PDF of ex-ante MTM loss.
- 6. Jointly distributed RVs (Ross chapter 6)
 - The multivariate normal distribution.
 - The concept of 'correlation'.
- 7. Portfolio VAR versus security VAR
 - Basic concept in portfolio theory securities intermingle in complex and non-obvious ways.
 - Linear combination of security VAR \neq portfolio VAR.
 - Examples
 - Diversification with two uncorrelated securities,
 - Diversification with two correlated securities
 - Nonlinear securities: Nifty spot + Nifty put
 - A ten-stock portfolio individual stocks versus portfolio
 - portfolio of a few government bonds
 - Core message: Portfolio analysis \neq security analysis.
- 8. Expectation (Ross chapter 7)
- 9. The microeconomics of risk and risk aversion
 - Expected utility hypothesis
 - Risk neutral valuation
 - Construct pretty diagrams highlighting how U(certainty eqvt) is better.
- 10. Portfolio theory in an MVN world

Assets are MVN.

- Markowitz analysis.
- Portfolio optimisation in a Markowitz world.
- 11. Principles of asset pricing
 - State space
 - Complete markets
 - Arrow-Debreu securities

- Risk-neutral measure
- 12. The method of Monte Carlo
- 13. How to compute VaR (simple MVN+linear case)
 - The simplest case: multivariate normal returns, linear products $Var(r_p) = w'Sw$, read off a percentile from the normal distribution.
 - Do a few examples, questions in a problemset.
 - Evaluation this is great but -
 - Needs normality,
 - Need linear products, and
 - Need to know the true S.
- 14. Limit theorems (Ross chapter 8)
- 15. Introduction to statistics
 - Notion of population and sample
 - Concept of estimator
 - Desirable properties of estimators: efficiency, bias, consistency
 - analysis of sample mean
 - Use of the *central limit theorem* CLT to get distribution.
 - Mean versus median.

16. Ols

Example of OLS - *market model*:

- Using the market model with daily data
- Benefits of going intra-day
- Using market model for variance decomposition
- Testing value added of a fund manager $(H_0 : \alpha = 0)$
- Single index market model (SIMM)
- Using OLS to lead on to a SIMM covariance matrix estimator.
- 17. Computation-intensive statistics
 - Difficulties with CLT approach
 - Simulations when the true distribution is known
 - Concept of bootstrap
- 18. The methodology used to calculate the NSE MIBOR
 - Illustrates issues like mean versus median
 - Illustrates use of simulation-based estimators.
 - Teaches you how MIBOR works.
- 19. Introduction to time-series
 - Autocorrelation function (ACF)

- AR(1)
- AR(k)
- MA(1)
- MA(k)
- ARMA(1,1)
- ARMA(p,q)

Warning - all assume homoscedastic innovations.

- 20. VAR by historical simulation (HS)
 - What is HS?
 - Evaluation: very nice for i.i.d. problems, breaks for non-i.i.d. problems.
- 21. Volatility clustering
 - Most real-world financial returns exhibit clustering
 - Examples: Nifty, INR-USD.
 - Consequences of volatility clustering for VaR problems: long-run average volatility is too-high or too-low specifically, if recent days were volatile, we would expect high VAR.
- 22. Heteroskedasticity models
 - ARCH(1)
 - ARCH(q)
 - GARCH
 - IGARCH
- 23. Implementing VaR in an ARCH world.
 - ARCH(1)
 - Riskmetrics
- 24. Modelling the Nifty series
- 25. Modelling the ten-year interest rate
- 26. Testing VaR implementations
 - Simple notions
 - Christoffersen's test
 - Examples with Indian data
 - Difficulties with power:
 - Difficulties in disambiguating closely related models.
 - Worst case-situations to watch out for.
- 27. Introduction to continuous time
 - Weiner processes
 - Models using the Weiner process
 - Arithmetic brownian motion (ABM)

- Geometric brownian motion (GBM)
- Mean-reversion model (O-U process)
- Simulating from the GBM
- $28.\ {\rm Ito's\ lemma}$

Application: an interest rate follows O-U, what is the process that the bond price follows?

- 29. The Black/Scholes analysis
 - Black-Scholes (Sharpe, Alexander, Bailey proof, binomial approximation)
 - Getting to it using Ito's lemma
 - Derivations of all greeks
 - Delta neutral hedging
- 30. VaR for nonlinear products
 - Failure of simple approaches for portfolios with nonlinear products
 - CME's SPAN
 - Option greeks as sensitivity measures but they don't give VaR.
- 31. VaR by Monte Carlo
 - Very general $r \sim f(\theta)$, without restrictions.
 - Any products based on this (pricing formulas should be easy)
 - As long as we can simulate from f, we can do VaR
 - But this is costly.
- 32. Models of interest rates
 - Simple mean-reverting models in continuous time.
 - Matching the term structure to calibrate them.
 - Using these to price interest rate derivatives.

NOTE: In all these topics, we will be dealing explicitly with Indian financial markets and financial time series.