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Recap

Economists problem: creating a quantifiable hypothesis
Econometricians problem: validating the hypothesis
Focus of the problem: an economic RV and it’s probability
distribution.
Some concepts in probability: PDs, PDFs, CDs, CDFs
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Moment generating functions of PDs/PDFs
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Expectation of RVs

E(x)
For a discrete RV:

E(x) =
n∑

i=1

xiPr(xi)

where Pr(x) is the probability distribution of x .
For a continuous RV:

E(x) =

∫ x=∞

x=−∞
xf (x)dx

where f (x) is the probability density function of x .
Example: bernoulli RV.
x = 0, 1; Pr(0) = p, Pr(1) = 1 - p

E(x) = 0 ∗ p + 1 ∗ (1− p) = 1− p
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Testing concepts: expectation of a discrete variable

RV x , can take the following discrete values, each with equal
probability:

x -1 2 5 7 10 11 12 15 20 30

What is E(x)?
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Testing concepts: expectation of a discrete variable

With each value taking equal probability, the PD for x is:

x -1 2 5 7 10 11 12 15 20 30
x*Pr(x) -0.1 0.2 0.5 0.7 1.0 1.1 1.2 1.5 2.0 3.0

E(x) =
∑

x*Pr(x) = 11.1
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Example: expectation of continuous variables

Uniform Continuous RV: x = [L,U]; Pr(xi) = p = 1/(U − L)

E(x) =

∫ U

L

x
U − L

d(x)

=
1

U − L

∫ U

L
x d(x) =

1
U − L

(
x2

2

)U

L

=
U + L

2
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Example: expectation of continuous variables

Normal RV: x = [−∞,∞]; Pr(x) = 1√
2πσ

e−
1
2 (x−µ/σ)2

E(x) =

∫ ∞
−∞

x f (x) d(x)

=
e1/2σ2

√
2πσ

∫ ∞
−∞

x e−
1
2 (x−µ)2

d(x)

Set y = x − µ

E(x) = C
∫ ∞
−∞

y e−
1
2 y2

d(y)− µC
∫ ∞
−∞

e−
1
2 y2

d(y)

= C
∫ ∞
−∞

y e−
1
2 y2

d(y)− µ
∫ ∞
−∞

f (x) d(x)
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Example: expectation of normal distribution

First integral on the RHS:∫
y e−

1
2 y2

d(y) =

(
−e−

y2

2

)∞
−∞

= 0

Then the expectation becomes:

E(x) = 0 + µ

∫ ∞
−∞

f (x) d(x)

E(x) = µ
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Testing concepts: Expectation of a uniform RV

Uniform Continuous RV: x = [0,10]. What is E(x)?

E(x) =

∫ 10

0
x f (x) d(x)

=

∫ 10

0
x

1
10

d(x)

=
1

10

∫ 10

0
x d(x)

=
1

10

(
x2

2

)10

0
= 5
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Expectations of functions of discrete RVs

Function g(x) of a random variable x is a random variable.
Then, g(x) has a probability distribution based on Pr(x).
For any discrete RV, x , with a known PD, Pr(x), the
expectation of any function g() of x is calculated as:

E(g(x)) =
max∑
min

g(x)Pr(x)

For any continuous RV y , with a known PDF, f(y ), the
expectation of any function g() of y is calculated as:

E(g(y)) =

∫ max

min
g(y)f (y)dy
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Example: E(x2) for a binary variable

Bernoulli RV: x = 0, 1, Pr(x) = p, (1-p)
g(x) = x2 = 0, 1, Pr(g(x)) = p, (1-p)
E(g(x)) = E(x2) = 0*p + 1*(1-p) = (1-p)
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Testing concepts: binary variable

RV x is binary with the following probability distribution:

x Pr(x) x2 x2*Pr(x)
2 0.3 4 1.2
5 0.7 25 17.5

Questions:
1 What is E(x2)? 18.7
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Example: E(x2) for a continuous uniform variable

Uniform Continuous RV: x = [L,U]; f(xi) = p = 1/(U − L)

g(x) = x2

E(x2) =

∫ U

L

x2

U − L
d(x)

=
1

U − L

∫ U

L
x2 d(x) =

1
U − L

(
x3

3

)U

L

=
U3 − L3

3 ∗ (U − L)

Example: L=0, U=10; What is E(x2)?
Pr(xi ) = 1/10, E(x2) = 1000/30 = 33.3333
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Moment generating functions

For any distribution, there can be a series of “moments”
calculated as follows:

(Discrete rv) E(x i) =
max∑
min

x iPr(x)

(Continuous rv) E(x i) =

∫ ∞
−∞

x f (x) d(x)

Each moment describes a feature of the distribution.
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The unique moments of a distribution

The moments are functions of the parameters of the
distribution.
Every distribution has as many unique moments as
parameters.
The remainder of the moments can be expressed as
functions of the parameters.
For example, the bernoulli distribution had E(x) = E(x2) =
(1-p), the probability of success.
For example, every moment of the normal distribution can
be expressed as a function of the first two moments, the
mean (µ) and the variance (σ2).
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Numerical tools to describe a distribution
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Statistical measures for a distribution

Measure of location: Mean, mode, median
Measure of dispersion: Variance, range, quartiles
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Measures of location

Mean: An expected value on a random draw from the
dataset.
Mode: The value that occurs with the maximum frequency.
Easily interpreted for discrete variables.
The mode for the continuous RV datasets is interpreted in
terms of the “range/set” of values that are most often
observed.
Median: The value of the RV at which 50% of the dataset
is observed.
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Examples: Mean, x̄

Find the mean of the data: 5, 1, 6, 2, 4:

x̄ =

∑
x

n
=

18
5

= 3.6
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Examples: Median

Find the median of: 1, 7, 3, 1, 4, 5, 3.
First step is to order the data: 1, 1, 3, 3, 4, 5, 7.
The median is 3, the midway point, for an odd number of
data.
When the data has an even number of points, the median
is calculated as the midpoint between the two choices.
For a dataset: 9, 5, 7, 3, 1, 8, 4, 6, ordered as 1, 3, 4, 5, 6,
7, 8, 9, the median is 5.5.
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Pros and cons of location measures

Typically, all three measures tend to cluster together - the
differences are not very large.
However the mean is most sensitive to the presence of
outliers.
(For example, a day on which a trader places a buy limit
order for 100 million shares of Reliance instead of a a
thousand shares.)
The median is less sensitive to the mean. It is not
influenced by the value of the observations, just their
number.
Thus, it can be a more robust measure of location than the
mean.
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Measures of dispersion

Range: The difference between the highest and the lowest
value of the RV in the dataset.
Example: In data, 3, 7, 2, 1, 8 the range = 8 - 1 = 7.
Variance: The value of the RVs as differences from the
average value, squared and summed up. It is denoted by
σ(x)2.

σ(x) =

∑
xi − x̄

(n − 1)

Example: x̄ = 4.2, σ(x)2 =
(−1.22 + 2.82 +−2.22 +−3.22 + 3.82)/4 = 9.7.
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Calculating the data dispersion using x̄ , σ2

Question: what is the range of values of the RV between
which we can find 95% of the data?
Answer:

1 Upper range value = x̄ + 1.96 ∗ σ
2 Lower range value = x̄ − 1.96 ∗ σ
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Empirical rules

x̄ ± σ = 85% of the dataset
The percentage will be larger for more skewed
distributions. The percentage will be closer to 70% for
distributions that are more symmetric.
x̄ ± 2σ = 97% of the dataset
x̄ ± 3σ = 99% of the dataset
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Measures of dispersion: Percentiles, Quartiles

Percentiles: Denoted as pth percentile. The value of RV, x ,
such that p% of the dataset falls below the value x , and
(100− p)% is above.
Quartiles: A set of three specific percentiles at the
25th,50th,75th percentiles. They are the lower, median and
upper quartile values.
The median is the 2nd quartile and the 50th percentile.
Inter-quartile range (IQR): The distance between the lower
and the upper quartile values.
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Setting up likelihood framework for
estimation
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Syntax: Population distributions

Given a population prob. distribution, P(x), the frequency
of x in the population is denoted as f (x).
Given a sample of size n, the frequency of x in the sample
is denoted as f̂ (x).
f (x) is a deterministic function of the PD/PDF.
f̂ (x) is a random variable, which is the function of the
sample!
f (x) is always the same for a given x .
f̂ (x) varies depending upon the sample.
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Recap on PDFs vs. CDFs

Theory about distributions focuses on CDFs.

F (x) = P(X ≤ x)

This is well defined, irrespective of the type of rv.
From the CDFs we can calculated the joint distribution of
X ,Y as:

F (x , y) = P(X ≤ x and Y ≤ y)

From the CDF we calculate the marginal distribution
function as:

F (y) = P(Y ≤ y) = P(X ≤ ∞andY ≤ y)

If X ,Y are independent, the joint distribution function is the
product of the marginals:

P(X ≤ x and Y ≤ y) = P(X ≤ x)P(Y ≤ y)
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Developing a full statistical model
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The Bernoulli model

Question: What is the population frequency of girls among
new born children?
Economists hypothesis: If Yi is the gender of child i , then:

1 Yi are independent across all i .
2 Yi come from an identical distribution
3 Yi are Bernoulli distributed, with p = θ
4 θ will take values between 0 and 1.

(Note: Are all these reasonable assumptions?)
Econometrician’s task: Find the correct θ
Get a data: same dataset as the UK dataset of newborn
children where P(Y = boy) = 0.513% and N ∼ 715,000
observations.
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The likelihood function approach

We analyse how probable the different outcomes
observed are for a given θ.
Start from scratch: if we know θ, then for a sample of size
N, can we write the probability of observing
Y1 = y1,Y2 = y2, . . . ,YN = yN?
Assuming independence (assumption #1), it is:

P(Y1 ≤ y1, . . . ,YN ≤ yN) = P(Y1 ≤ y1) . . .P(YN ≤ yN)

= Πi=N
i=1 P(Yi ≤ yi)

= Πi=N
i=1 θ

yi (1− θ)(1−yi )

= θ
PN

1 yi (1− θ)
PN

1 (1−yi )

But ȳ =
1
N

N∑
1

yi

P(Y1 ≤ y1, . . . ,YN ≤ yN) = θnȳ (1− θ)n(1−ȳ)
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The likelihood function, L

P(Y1 ≤ y1,Y2 ≤ y2, . . . ,YN ≤ yN |θ) = fθ(y1, y2, . . . , yN)
Here, the probability is a function of a known θ. The
(y1, y2, . . . , yN) is a set of outcomes in a sample of size N
generated by parameter θ.
We flip this around to asking: given an N-sized sample,
can we use the likelihood of a given value of θ to have
generated the observed sample of size N? Or,
What is the likelihood of θ given the sample:

LY1,Y2,...,YN (θ) = fθ(Y1,Y2, . . . ,YN)

Here, Y1, . . . ,YN is a fixed set of random observations in
the dataset.
The likelihood function depends only on the observations.
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The likelihood function for the Bernoulli model

Given the sample, we say:

L(Y1,...,YN )(θ) = θȲ (1− θ)(1− Ȳ )
N

For the Bernoulli model, L(θ) depends only on Ȳ
Therefore, Ȳ becomes a sufficient statistic for θ.
Estimation is about how to find the best value of θ given Ȳ :
Find θ such that L is maximised.
Which brings us to optimisation theory given a function.
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