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@ Economists problem: creating a quantifiable hypothesis
@ Econometricians problem: validating the hypothesis

@ Focus of the problem: an economic RV and it’s probability
distribution.

@ Some concepts in probability: PDs, PDFs, CDs, CDFs
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Moment generating functions of PDs/PDFs
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Expectation of RVs

@ E(x)
@ For a discrete RV:

E(x) = En: XiPr(x;)
i=1

where Pr(x) is the probability distribution of x.
@ For a continuous RV:

X=00

E(x) = /X xf(x)dx

=—00

where f(x) is the probability density function of x.

@ Example: bernoulli RV.
x=0,1;Pr(0)=p,Pr(1)=1-p

E(x) = 0xp+1x(1—p)=1—-p



Testing concepts: expectation of a discrete variable

RV x, can take the following discrete values, each with equal
probability:

x|-1t 2 5 7 10 11 12 15 20 30

What is E(x)?
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Testing concepts: expectation of a discrete variable

With each value taking equal probability, the PD for x is:

X -1 2 5 7 10 11 12 15 20 30
x*Pr(x) | -0 02 05 07 10 11 12 15 20 3.0

E(x) = > x*Pr(x) = 11.1
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Example: expectation of continuous variables

@ Uniform Continuous RV: x = [L,U]; Pr(x;)) = p=1/(U — L)

E(x) = / X L d(x)
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Example: expectation of continuous variables

@ Normal RV: x = [—o0, oc]; Pr(x) = ﬁe—%w—u/a)2

E(x) = /jo x f(x) d(x)
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Example: expectation of normal distribution

@ First integral on the RHS:

frevan - (+5).

=0
@ Then the expectation becomes:
E(x) = 0+M/ f(x) d(x)

E(x) = n
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Testing concepts: Expectation of a uniform RV

@ Uniform Continuous RV: x = [0,10]. What is E(x)?

10
E(x) = /0 x f(x) d(x)
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Expectations of functions of discrete RVs

@ Function g(x) of a random variable x is a random variable.
Then, g(x) has a probability distribution based on Pr(x).

@ For any discrete RV, x, with a known PD, Pr(x), the
expectation of any function g() of x is calculated as:

max

E(9(x) = > g(x)Pr(x)

@ For any continuous RV y, with a known PDF, f(y), the
expectation of any function g() of y is calculated as:
max

E(g(y)) = aW)f(y)dy

min

Susan Thomas Probability distributions



Example: E(x?) for a binary variable

@ Bernoulli RV: x =0, 1, Pr(x) = p, (1-p)
@ g(x) = x*=0, 1, Pr(g(x)) = p, (1-p)
® E(g(x)) = E(x®) =0"p + 1*(1-p) = (1-p)

Susan Thomas Probability distributions



Testing concepts: binary variable

RV x is binary with the following probability distribution:

x Pr(x) x2 x?>*Pr(x)
2 03 4 1.2
5 07 25 17.5

Questions:
@ Whatis E(x?)? 18.7
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Example: E(x?) for a continuous uniform variable

@ Uniform Continuous RV: x = [L,U]; f(x;) = p=1/(U — L)

@ g(x) = x?
E(x?) = / g d
B 5 I x3\Y
U—L . x d(X)_U—L<3)L
US_LS
T 3« (U-1L)

@ Example: L=0, U=10; What is E(x?)?
e Pr(x;) = 1/10, E(x2) = 1000/30 = 33.3333
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Moment generating functions

@ For any distribution, there can be a series of “moments”
calculated as follows:

(Discreterv) E(x') = ZXiPr(X)

min

(Continuous rv) E(x') = /OO x f(x) d(x)

—0o0

@ Each moment describes a feature of the distribution.
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The unique moments of a distribution

@ The moments are functions of the parameters of the
distribution.

@ Every distribution has as many unique moments as
parameters.
The remainder of the moments can be expressed as
functions of the parameters.

@ For example, the bernoulli distribution had E(x) = E(x?) =
(1-p), the probability of success.

@ For example, every moment of the normal distribution can
be expressed as a function of the first two moments, the
mean (1) and the variance (2).
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Numerical tools to describe a distribution
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Statistical measures for a distribution

@ Measure of location: Mean, mode, median
@ Measure of dispersion: Variance, range, quartiles
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Measures of location

@ Mean: An expected value on a random draw from the
dataset.

@ Mode: The value that occurs with the maximum frequency.
Easily interpreted for discrete variables.
The mode for the continuous RV datasets is interpreted in
terms of the “range/set” of values that are most often
observed.

@ Median: The value of the RV at which 50% of the dataset
is observed.
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Examples: Mean, x

@ Find the mean of the data: 5, 1, 6, 2, 4:

LX_18 g6

X:n 5
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Examples: Median

@ Find the medianof: 1,7, 3, 1, 4, 5, 3.

@ First step is to order the data: 1,1, 3, 3,4, 5, 7.

@ The median is 3, the midway point, for an odd number of
data.

@ When the data has an even number of points, the median
is calculated as the midpoint between the two choices.

@ For adataset: 9,5,7,3,1,8,4,6,ordered as 1, 3, 4, 5, 6,
7,8, 9, the median is 5.5.
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Pros and cons of location measures

@ Typically, all three measures tend to cluster together - the
differences are not very large.

@ However the mean is most sensitive to the presence of
outliers.
(For example, a day on which a trader places a buy limit
order for 100 million shares of Reliance instead of a a
thousand shares.)

@ The median is less sensitive to the mean. It is not
influenced by the value of the observations, just their
number.

Thus, it can be a more robust measure of location than the
mean.
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Measures of dispersion

@ Range: The difference between the highest and the lowest
value of the RV in the dataset.
Example: In data, 3,7,2,1,8therange=8-1=7.

@ Variance: The value of the RVs as differences from the
average value, squared and summed up. It is denoted by

o (x)2.
> Xi— X
o(x) = ﬁ

Example: X = 4.2, 5(x)? =
(-1.22 42824 -222 1+ 322 13.82)/4=97.
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Calculating the data dispersion using X, 02

@ Question: what is the range of values of the RV between
which we can find 95% of the data?
@ Answer:

@ Upper range value = x + 1.96 x o
@ Lowerrange value = x —1.96 x o
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Empirical rules

@ X + o = 85% of the dataset
The percentage will be larger for more skewed
distributions. The percentage will be closer to 70% for
distributions that are more symmetric.

@ X + 20 = 97% of the dataset
@ X + 30 = 99% of the dataset
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Measures of dispersion: Percentiles, Quartiles

@ Percentiles: Denoted as p' percentile. The value of RV, x,
such that p% of the dataset falls below the value x, and
(100 — p)% is above.

@ Quartiles: A set of three specific percentiles at the
25t 50t 75! percentiles. They are the lower, median and
upper quartile values.

The median is the 2" quartile and the 50" percentile.

@ Inter-quartile range (IQR): The distance between the lower

and the upper quartile values.
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Setting up likelihood framework for
estimation
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Syntax: Population distributions

@ Given a population prob. distribution, P(x), the frequency
of x in the population is denoted as f(x).

@ Given a sample of size n, the frequency of x in the sample
is denoted as f(x).

@ f(x) is a deterministic function of the PD/PDF.
f(x) is a random variable, which is the function of the
sample!

@ f(x) is always the same for a given x.
?(x) varies depending upon the sample.
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Recap on PDFs vs. CDFs

@ Theory about distributions focuses on CDFs.
F(x) = P(X < x)

This is well defined, irrespective of the type of rv.

@ From the CDFs we can calculated the joint distribution of
X, Y as:
F(x,y)=P(X<xand Y < )

@ From the CDF we calculate the marginal distribution
function as:

F(y) = P(Y <y) = P(X < ccandY < y)

@ If X, Y are independent, the joint distribution function is the
product of the marginals:

P(X<xand Y <y)=P(X <x)P(Y <y)



Developing a full statistical model
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The Bernoulli model

@ Question: What is the population frequency of girls among
new born children?
@ Economists hypothesis: If Y; is the gender of child i, then:

@ Y, are independent across all /.

@ Y, come from an identical distribution
© Y, are Bernoulli distributed, with p = 4
© 6 will take values between 0 and 1.

(Note: Are all these reasonable assumptions?)
@ Econometrician’s task: Find the correct 0

@ Get a data: same dataset as the UK dataset of newborn
children where P(Y = boy) = 0.513% and N ~ 715,000
observations.
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The likelihood function approach

@ We analyse how probable the different outcomes
observed are for a given 6.

@ Start from scratch: if we know 6, then for a sample of size
N, can we write the probability of observing

Yi=y,Ya=Yo,..., YN =YN?
@ Assuming independence (assumption #1), it is:

P(Ys <y1,....Yn<yn) = P(Yi<y1)...P(Yn < Wn)
= NP <)
= n;.qug.Vi“ _9)(1—}’:')
— 924\’}//(1 _ 9)2?’(1—}4‘)
;N
Buty = NZ:YI
P(Ys<yi,...,Yn<yn) = 07(1—0)"7)



The likelihood function, L

° P(Y1 < , Y2 < Yo,..., YN < YN|9) = fe(y1,}’27--->}’N)
Here, the probability is a function of a known 6. The
(Y1, Y2,...,¥n) is a set of outcomes in a sample of size N
generated by parameter 6.

@ We flip this around to asking: given an N-sized sample,
can we use the likelihood of a given value of ¢ to have
generated the observed sample of size N? Or,

@ What is the likelihood of # given the sample:

Ly, v,,...vne) = To(Y1, Yo, ..., YN)

Here, Yy, ..., Yy is a fixed set of random observations in
the dataset.

@ The likelihood function depends only on the observations.
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The likelihood function for the Bernoulli model

@ Given the sample, we say:

o _ N
Livy.vy(0) =607(1 —0)1 = ¥)

@ For the Bernoulli model, L(#) depends only on Y
@ Therefore, Y becomes a sufficient statistic for 6.

@ Estimation is about how to find the best value of 6 given Y:
Find 6 such that L is maximised.

@ Which brings us to optimisation theory given a function.
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