Probability distributions

Susan Thomas
IGIDR, Bombay

August 7, 2008

- Economists problem: creating a quantifiable hypothesis
- Econometricians problem: validating the hypothesis
- Focus of the problem: an economic RV and it's probability distribution.
- Some concepts in probability: PDs, PDFs, CDs, CDFs

Moment generating functions of PDs/PDFs

Expectation of RVs

- $E(x)$
- For a discrete RV:

$$
\mathrm{E}(x)=\sum_{i=1}^{n} x_{i} \operatorname{Pr}\left(x_{i}\right)
$$

where $\operatorname{Pr}(x)$ is the probability distribution of x.

- For a continuous RV:

$$
\mathrm{E}(x)=\int_{x=-\infty}^{x=\infty} x f(x) d x
$$

where $f(x)$ is the probability density function of x.

- Example: bernoulli RV.

$$
\begin{aligned}
& \mathrm{x}=0,1 ; \operatorname{Pr}(0)=\mathrm{p}, \operatorname{Pr}(1)=1-\mathrm{p} \\
& \quad E(x)=0 * p+1 *(1-p)=1-p
\end{aligned}
$$

Testing concepts: expectation of a discrete variable

RV x, can take the following discrete values, each with equal probability:

What is $E(x)$?

Testing concepts: expectation of a discrete variable

With each value taking equal probability, the PD for x is:

x	-1	2	5	7	10	11	12	15	20	30
$x^{*} \operatorname{Pr}(x)$	-0.1	0.2	0.5	0.7	1.0	1.1	1.2	1.5	2.0	3.0

$E(x)=\sum x * \operatorname{Pr}(x)=11.1$

Example: expectation of continuous variables

- Uniform Continuous RV: $\mathrm{x}=[\mathrm{L}, \mathrm{U}] ; \operatorname{Pr}\left(x_{i}\right)=p=1 /(U-L)$

$$
\begin{aligned}
E(x) & =\int_{L}^{U} \frac{x}{U-L} d(x) \\
& =\frac{1}{U-L} \int_{L}^{U} x d(x)=\frac{1}{U-L}\left(\frac{x^{2}}{2}\right)_{L}^{U} \\
& =\frac{U+L}{2}
\end{aligned}
$$

Example: expectation of continuous variables

- Normal RV: $x=[-\infty, \infty] ; \operatorname{Pr}(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2}(x-\mu / \sigma)^{2}}$

$$
\begin{aligned}
E(x) & =\int_{-\infty}^{\infty} x f(x) d(x) \\
& =\frac{e^{1 / 2 \sigma^{2}}}{\sqrt{2 \pi} \sigma} \int_{-\infty}^{\infty} x e^{-\frac{1}{2}(x-\mu)^{2}} d(x) \\
\text { Set } y & =x-\mu \\
E(x) & =C \int_{-\infty}^{\infty} y e^{-\frac{1}{2} y^{2}} d(y)-\mu C \int_{-\infty}^{\infty} e^{-\frac{1}{2} y^{2}} d(y) \\
& =C \int_{-\infty}^{\infty} y e^{-\frac{1}{2} y^{2}} d(y)-\mu \int_{-\infty}^{\infty} f(x) d(x)
\end{aligned}
$$

Example: expectation of normal distribution

- First integral on the RHS:

$$
\begin{aligned}
\int y e^{-\frac{1}{2} y^{2}} d(y) & =\left(-e^{-\frac{y^{2}}{2}}\right)^{\infty} \\
& =0
\end{aligned}
$$

- Then the expectation becomes:

$$
\begin{aligned}
& E(x)=0+\mu \int_{-\infty}^{\infty} f(x) d(x) \\
& E(x)=\mu
\end{aligned}
$$

Testing concepts: Expectation of a uniform RV

- Uniform Continuous RV: $x=[0,10]$. What is $E(x)$?

$$
\begin{aligned}
E(x) & =\int_{0}^{10} x f(x) d(x) \\
& =\int_{0}^{10} x \frac{1}{10} d(x) \\
& =\frac{1}{10} \int_{0}^{10} x d(x) \\
& =\frac{1}{10}\left(\frac{x^{2}}{2}\right)_{0}^{10} \\
& =5
\end{aligned}
$$

Expectations of functions of discrete RVs

- Function $g(x)$ of a random variable x is a random variable. Then, $g(x)$ has a probability distribution based on $\operatorname{Pr}(x)$.
- For any discrete RV, x, with a known $\operatorname{PD}, \operatorname{Pr}(x)$, the expectation of any function $g()$ of x is calculated as:

$$
E(g(x))=\sum_{\min }^{\max } g(x) \operatorname{Pr}(x)
$$

- For any continuous RV y, with a known PDF, $f(y)$, the expectation of any function $g()$ of y is calculated as:

$$
E(g(y))=\int_{\min }^{\max } g(y) f(y) d y
$$

Example: $\mathrm{E}\left(x^{2}\right)$ for a binary variable

- Bernoulli RV: $x=0,1, \operatorname{Pr}(x)=p,(1-p)$
- $\mathrm{g}(\mathrm{x})=x^{2}=0,1, \operatorname{Pr}(\mathrm{~g}(\mathrm{x}))=\mathrm{p},(1-\mathrm{p})$
- $\mathrm{E}(\mathrm{g}(\mathrm{x}))=\mathrm{E}\left(x^{2}\right)=0^{*} \mathrm{p}+1^{*}(1-\mathrm{p})=(1-\mathrm{p})$

Testing concepts: binary variable

RV x is binary with the following probability distribution:

x	$\operatorname{Pr}(\mathrm{x})$	x^{2}	$x^{2 *} \operatorname{Pr}(\mathrm{x})$
2	0.3	4	1.2
5	0.7	25	17.5

Questions:
(1) What is $\mathrm{E}\left(x^{2}\right)$? 18.7

Example: $\mathrm{E}\left(x^{2}\right)$ for a continuous uniform variable

- Uniform Continuous RV: $\mathrm{x}=[\mathrm{L}, \mathrm{U}] ; \mathrm{f}\left(x_{i}\right)=p=1 /(U-L)$
- $\mathrm{g}(\mathrm{x})=x^{2}$

$$
\begin{aligned}
E\left(x^{2}\right) & =\int_{L}^{U} \frac{x^{2}}{U-L} d(x) \\
& =\frac{1}{U-L} \int_{L}^{U} x^{2} d(x)=\frac{1}{U-L}\left(\frac{x^{3}}{3}\right)_{L}^{U} \\
& =\frac{U^{3}-L^{3}}{3 *(U-L)}
\end{aligned}
$$

- Example: $\mathrm{L}=0, \mathrm{U}=10$; What is $\mathrm{E}\left(x^{2}\right)$?
- $\operatorname{Pr}\left(x_{i}\right)=1 / 10, \mathrm{E}\left(x^{2}\right)=1000 / 30=33.3333$

Moment generating functions

- For any distribution, there can be a series of "moments" calculated as follows:

$$
\begin{aligned}
\text { (Discrete rv) } E\left(x^{i}\right) & =\sum_{\min }^{\max } x^{i} \operatorname{Pr}(x) \\
(\text { Continuous rv }) E\left(x^{i}\right) & =\int_{-\infty}^{\infty} x f(x) d(x)
\end{aligned}
$$

- Each moment describes a feature of the distribution.

The unique moments of a distribution

- The moments are functions of the parameters of the distribution.
- Every distribution has as many unique moments as parameters.
The remainder of the moments can be expressed as functions of the parameters.
- For example, the bernoulli distribution had $\mathrm{E}(\mathrm{x})=\mathrm{E}\left(x^{2}\right)=$ (1-p), the probability of success.
- For example, every moment of the normal distribution can be expressed as a function of the first two moments, the mean (μ) and the variance $\left(\sigma^{2}\right)$.

Numerical tools to describe a distribution

Statistical measures for a distribution

- Measure of location: Mean, mode, median
- Measure of dispersion: Variance, range, quartiles

Measures of location

- Mean: An expected value on a random draw from the dataset.
- Mode: The value that occurs with the maximum frequency. Easily interpreted for discrete variables. The mode for the continuous RV datasets is interpreted in terms of the "range/set" of values that are most often observed.
- Median: The value of the RV at which 50% of the dataset is observed.

Examples: Mean, \bar{x}

- Find the mean of the data: $5,1,6,2,4$:

$$
\bar{x}=\frac{\sum x}{n}=\frac{18}{5}=3.6
$$

Examples: Median

- Find the median of: $1,7,3,1,4,5,3$.
- First step is to order the data: $1,1,3,3,4,5,7$.
- The median is 3 , the midway point, for an odd number of data.
- When the data has an even number of points, the median is calculated as the midpoint between the two choices.
- For a dataset: $9,5,7,3,1,8,4,6$, ordered as $1,3,4,5,6$, $7,8,9$, the median is 5.5 .

Pros and cons of location measures

- Typically, all three measures tend to cluster together - the differences are not very large.
- However the mean is most sensitive to the presence of outliers.
(For example, a day on which a trader places a buy limit order for 100 million shares of Reliance instead of a a thousand shares.)
- The median is less sensitive to the mean. It is not influenced by the value of the observations, just their number.
Thus, it can be a more robust measure of location than the mean.

Measures of dispersion

- Range: The difference between the highest and the lowest value of the RV in the dataset.
Example: In data, 3, 7, 2, 1, 8 the range $=8-1=7$.
- Variance: The value of the RVs as differences from the average value, squared and summed up. It is denoted by $\sigma(x)^{2}$.

$$
\sigma(x)=\frac{\sum x_{i}-\bar{x}}{(n-1)}
$$

Example: $\bar{x}=4.2, \sigma(x)^{2}=$
$\left(-1.2^{2}+2.8^{2}+-2.2^{2}+-3.2^{2}+3.8^{2}\right) / 4=9.7$.

Calculating the data dispersion using \bar{x}, σ^{2}

- Question: what is the range of values of the RV between which we can find 95% of the data?
- Answer:
(1) Upper range value $=\bar{x}+1.96 * \sigma$
(2) Lower range value $=\bar{x}-1.96 * \sigma$

Empirical rules

- $\bar{x} \pm \sigma=85 \%$ of the dataset

The percentage will be larger for more skewed distributions. The percentage will be closer to 70% for distributions that are more symmetric.

- $\bar{x} \pm 2 \sigma=97 \%$ of the dataset
- $\bar{x} \pm 3 \sigma=99 \%$ of the dataset

Measures of dispersion: Percentiles, Quartiles

- Percentiles: Denoted as $p^{\text {th }}$ percentile. The value of RV, x, such that $p \%$ of the dataset falls below the value x, and $(100-p) \%$ is above.
- Quartiles: A set of three specific percentiles at the $25^{\text {th }}, 50^{\text {th }}, 75^{\text {th }}$ percentiles. They are the lower, median and upper quartile values.
The median is the $2^{\text {nd }}$ quartile and the $50^{\text {th }}$ percentile.
- Inter-quartile range (IQR): The distance between the lower and the upper quartile values.

Setting up likelihood framework for estimation

- Given a population prob. distribution, $P(x)$, the frequency of x in the population is denoted as $f(x)$.
- Given a sample of size n, the frequency of x in the sample is denoted as $\hat{f}(x)$.
- $f(x)$ is a deterministic function of the PD/PDF. $\hat{f}(x)$ is a random variable, which is the function of the sample!
- $f(x)$ is always the same for a given x. $\hat{f}(x)$ varies depending upon the sample.

Recap on PDFs vs. CDFs

- Theory about distributions focuses on CDFs.

$$
F(x)=P(X \leq x)
$$

This is well defined, irrespective of the type of rv.

- From the CDFs we can calculated the joint distribution of X, Y as:

$$
F(x, y)=P(X \leq x \text { and } Y \leq y)
$$

- From the CDF we calculate the marginal distribution function as:

$$
F(y)=P(Y \leq y)=P(X \leq \infty \text { and } Y \leq y)
$$

- If X, Y are independent, the joint distribution function is the product of the marginals:

$$
P(X \leq x \text { and } Y \leq y)=P(X \leq x) P(Y \leq y)
$$

Developing a full statistical model

The Bernoulli model

- Question: What is the population frequency of girls among new born children?
- Economists hypothesis: If Y_{i} is the gender of child i, then:
(1) Y_{i} are independent across all i.
(2) Y_{i} come from an identical distribution
(3) Y_{i} are Bernoulli distributed, with $p=\theta$
(4) θ will take values between 0 and 1 .
(Note: Are all these reasonable assumptions?)
- Econometrician's task: Find the correct θ
- Get a data: same dataset as the UK dataset of newborn children where $P(Y=$ boy $)=0.513 \%$ and $N \sim 715,000$ observations.

The likelihood function approach

- We analyse how probable the different outcomes observed are for a given θ.
- Start from scratch: if we know θ, then for a sample of size N, can we write the probability of observing

$$
Y_{1}=y_{1}, Y_{2}=y_{2}, \ldots, Y_{N}=y_{N} ?
$$

- Assuming independence (assumption \#1), it is:

$$
\begin{aligned}
P\left(Y_{1} \leq y_{1}, \ldots, Y_{N} \leq y_{N}\right) & =P\left(Y_{1} \leq y_{1}\right) \ldots P\left(Y_{N} \leq y_{N}\right) \\
& =\Pi_{i=1}^{i=N} P\left(Y_{i} \leq y_{i}\right) \\
& =\Pi_{i=1}^{i=N} \theta^{y_{i}}(1-\theta)^{\left(1-y_{i}\right)} \\
& =\theta^{\sum_{1}^{N} y_{i}}(1-\theta)^{\sum_{i}^{N}\left(1-y_{i}\right)} \\
\text { But } \bar{y} & =\frac{1}{N} \sum_{1}^{N} y_{i} \\
P\left(Y_{1} \leq y_{1}, \ldots, Y_{N} \leq y_{N}\right) & =\theta^{n \bar{y}}(1-\theta)^{n(1-\bar{y})}
\end{aligned}
$$

- $P\left(Y_{1} \leq y_{1}, Y_{2} \leq y_{2}, \ldots, Y_{N} \leq y_{N} \mid \theta\right)=f_{\theta}\left(y_{1}, y_{2}, \ldots, y_{N}\right)$ Here, the probability is a function of a known θ. The $\left(y_{1}, y_{2}, \ldots, y_{N}\right)$ is a set of outcomes in a sample of size N generated by parameter θ.
- We flip this around to asking: given an N-sized sample, can we use the likelihood of a given value of θ to have generated the observed sample of size N ? Or,
- What is the likelihood of θ given the sample:

$$
L_{Y_{1}, Y_{2}, \ldots, Y_{N}(\theta)}=f_{\theta}\left(Y_{1}, Y_{2}, \ldots, Y_{N}\right)
$$

Here, Y_{1}, \ldots, Y_{N} is a fixed set of random observations in the dataset.

- The likelihood function depends only on the observations.

The likelihood function for the Bernoulli model

- Given the sample, we say:

$$
\left.L_{\left(Y_{1}, \ldots, Y_{N}\right)}(\theta)=\theta^{\bar{Y}}(1-\theta)^{(1-\bar{Y}}\right)^{N}
$$

- For the Bernoulli model, $L(\theta)$ depends only on \bar{Y}
- Therefore, \bar{Y} becomes a sufficient statistic for θ.
- Estimation is about how to find the best value of θ given \bar{Y} : Find θ such that L is maximised.
- Which brings us to optimisation theory given a function.

