Likelihood functions

Susan Thomas
IGIDR, Bombay

August 12, 2008

- Likelihood functions are based on the probability of observing the data.
- The first step is fixing a probability distribution, $f(\theta)$ where θ is the parameter defining the probability distribution.
- For a given dataset, $\left(Y_{1}, Y_{2}, \ldots, Y_{N}\right)$, the probability of observing the dataset, given θ is:

$$
f_{\theta}\left(Y_{1}, Y_{2}, \ldots, Y_{N}\right)
$$

This is a statement in outcome-space.

- The likelihood function turns this around:
$L_{Y_{1}, Y_{2}, \ldots, Y_{N}}(\theta)=f_{\theta}\left(Y_{1}, Y_{2}, \ldots, Y_{N}\right)$
L is a statement in parameter-space.

Example: likelihood for a Bernoulli distribution

- For eg., for a Bernoulli distribution, the probability distribution is:

$$
f_{\theta}(y)=\theta^{y}(1-\theta)^{(1-y)}
$$

- Given a sample of N observations, the joint distribution of $\left(Y_{1}, Y_{2}, \ldots, Y_{N}\right)$ is:

$$
\begin{aligned}
f_{\theta}(\vec{Y}) & =\prod_{i=1}^{i=N} f\left(Y_{i}=y_{i}\right) \\
& =\prod_{i=1}^{i=N} \theta^{y_{i}}(1-\theta)^{\left(1-y_{i}\right)}
\end{aligned}
$$

- Example, suppose $(\vec{Y})=(0,0,0,1,0,0,1,1)$. What is $f_{\theta}(\vec{Y})$?

$$
\begin{aligned}
f_{\theta}(\vec{Y}) & =\prod_{i=1}^{i=N} f\left(Y_{i}=y_{i}\right) \\
& =(1-\theta)^{5} \theta^{3} \\
& =L_{(\vec{Y})}(\theta)
\end{aligned}
$$

Estimation using the likelihood approach

- The likelihood approach asks: What value of θ makes the dataset (\vec{Y}) most probable?

$$
\hat{\theta}=\arg \max L_{(\vec{Y})}(\theta)=f(\theta ; \vec{Y})
$$

- Likelihood estimation: What value of θ makes (\vec{Y}) most probable?
- Usual approach: maximise the function wrt θ, set it to zero.
- This is the Maximum Likelihood Estimation of parameter θ. Usually referred to as MLE.

Example of MLE for a Bernoulli distribution

- Example, Bernoulli distribution. Dataset: $(\vec{Y})=(0,0,0,1,0,0,1,1)$.
- Here, the likelihood function, $L_{(\vec{Y})}(\theta)=(1-\theta)^{5} \theta^{3}$.
- Log is a monotonic transformation that makes it simpler to work with.
- Log likelihood function is

$$
\log (L)_{(\vec{Y})}(\theta)=5 * \log (1-\theta)+3 * \log (\theta)
$$

- Maximise the function for θ - differentiating it wrt θ :

$$
\begin{aligned}
\log (L)_{(\vec{Y})}(\theta) & =5 * \log (1-\theta)+3 * \log (\theta) \\
\delta \log (L) / \delta \theta=0 & =-5 /(1-\hat{\theta})+3 / \hat{\theta} \\
0 & =-5 \hat{\theta}+3(1-\hat{\theta}) \\
\hat{\theta} & =3 / 8=0.375
\end{aligned}
$$

Generalising the MLE for the Bernoulli distribution

- Given a generic data set, $\vec{Y}=\left(Y_{1} \leq y_{1}, \ldots, Y_{N} \leq y_{N}\right)$, given they are distributed bernoulli with parameter θ :

$$
\begin{aligned}
L_{\left(Y_{1} \leq y_{1}, \ldots, Y_{N} \leq y_{N}\right)}(\theta) & =\prod_{i=1}^{i=N} P\left(Y_{i} \leq y_{i}\right) \\
& =\prod_{i=1}^{i=N} \theta^{y_{i}}(1-\theta)^{\left(1-y_{i}\right)} \\
& =\theta^{\sum_{1}^{N} y_{i}}(1-\theta)^{\sum_{1}^{N}\left(1-y_{i}\right)} \\
\text { But } \bar{y} & =\frac{1}{N} \sum_{1}^{N} y_{i} \\
L_{\left(Y_{1} \leq y_{1}, \ldots, Y_{N} \leq y_{N}\right)}(\theta) & =\theta^{n \bar{y}}(1-\theta)^{n(1-\bar{y})}
\end{aligned}
$$

Transforming into \log space

$$
\log L_{\left(Y_{1} \leq y_{1}, \ldots, Y_{N} \leq y_{N}\right)}(\theta)=n \bar{y} \log \theta+(1-\bar{y}) \log (1-\theta)
$$

The MLE of the generic bernoulli distribution

- Maximising $\log L$ wrt θ gives:

$$
\begin{aligned}
\delta \log L / \delta \theta & =n\left(\frac{\bar{y}}{\theta}-\frac{1-\bar{y}}{1-\theta}\right) \\
n\left(\frac{\bar{y}}{\hat{\theta}}-\frac{1-\bar{y}}{1-\hat{\theta}}\right) & =0 \\
\hat{\theta} & =\bar{y}
\end{aligned}
$$

(Cross-check that it is the maximum? Calculate the second derivative of $\log L(\theta)$ wrt θ and check that it is negative at $\hat{\theta}$.)

- $\hat{\theta}$ is the value of the distribution parameter that maximises the value of the likelihood function.

$$
\hat{\theta}_{\mathrm{mle}}=\bar{y}
$$

- This expression for θ is called the estimator.
- The specfic value of $\hat{\theta}$ for the given sample is called the estimate.
- The MLE does not give the "most probable" value of θ. It gives the under which the sample is the most likely. le, the likelihood is maximised.
- MLE is not magic: all the problems of inference from sample remain with us.
- For example: I tossed a coin 10 times and got 9 heads. Using this data, the MLE gives $\hat{p}=0.9$. MLE does not eliminate sampling noise, or give us the truth. It's just a decent estimator.

Point 2 to remember about the likelihood function

- Since $f()$ is a joint probability, we will always have $\log L\left(\theta: X_{i}\right)>0$.
But we can have $\log L\left(\theta: X_{i}\right)>1$.
- Remember that $f(x)$ is a pdf, but $g(\theta)$ is not! Specifically, integrating over parameter space,

$$
\int_{-\infty}^{\infty} L(\theta) d \theta \neq 1!
$$

Back to the econometrician's checklist of tasks

- In defining and applying the likelihood approach, we have executed Step 1: ie, estimated the economic model.
- Step 2 is validating the hypothesis: ie, inference.
- For example, in the economic problem using the number of girls vs. boys among newly borns, the hypothesis was that the probability of a girl being born is 50%. le, $\theta=0.5$.
- In our dataset, $\bar{y}=48.74 \%$
- Inference asks the question: is the sample esimate statistically different from the hypothesis?

Approach to implementing statistical inference

- Consider a "restricted" model estimation: we set

$$
\theta=0.5
$$

Under $\theta=0.5$ we can calculate the joint probability of observing \vec{Y}. This becomes the likelihood value of the "restricted" model.

- We have already calculated the likelihood of the "unrestricted" model - which is

$$
\hat{\theta}=\bar{y}
$$

- Statistically test whether the value of "unrestricted" model likelihood is significantly different from the "restricted" model likelihood.

Approach to implementing statistical inference

- A popularly used test is called the "log-likelihood" ratio test, or the LR test statistic:

$$
\mathrm{LR}=-2 \log \left(L_{\text {restricted }} / L_{\text {unrestricted }}\right)
$$

- We can calculate the value for both.
- Question: what do we expect it to be?
- In our dataset of fraction of girl vs. boy newborns, the likelihood values are:

$$
\begin{aligned}
\log L_{R} & =-496290.6 \\
\log L_{U} & =-496033.8 \\
L R & =513.6
\end{aligned}
$$

- Questions: is this a large difference?
- The answer comes from theorems on what distributions we can expect for likelihood statistics.

Distributions of sample estimates

Population parameters and sample estimates

- Given a population distribution, $f(x)$ and a sample from that population, we know:
- $f(x)$ is a deterministic function of the PD/PDF.

But $\hat{f}(x)$ is a random variable, which is the function of the sample!

- $f(x)$ is always the same for a given x.
$\hat{f}(x)$ varies depending upon the sample.
- This is also true for moments of the population and the sample.
- For instance, the first moment of a distribution is $E(x)$. $E(x)=\mu$ is a deterministic function of the PD/PDF. $E(\vec{x})=\hat{\mu}$ varies in value from sample to sample.

Population parameters and sample estimates

- Therefore, a sample moment is an estimate, which is a random variable.
- Like all rv, every estimate has to have a expected value and a variation around the expected value.
- This is unlike the case of the population distribution, which has a well-defined expected value, and therefore, no variance.

Population parameters and sample estimates

- Example of the fraction of girl vs. boy births,
- $E(y)=\hat{\mu}_{y}=\sum_{i=1}^{N} y_{i}=0.4876$
- Variance of $y=E\left(y-\hat{\mu}_{y}\right)^{2}=E(y)^{2}-E\left(\hat{\mu}_{y}\right)^{2}$ This works out to be $0.4876-0.4876^{2}=0.25$
- This is interpreted as:

Across different samples of size N, we expect that the mean $E(y)$ will be 0.4876 .
But since $E(y)$ will be different for different samples, there will be a range of values of $E(y)$ around 0.4876 , which is determined by $\sigma=0.5$

- This implies that the expected fraction of girl to boy births in the population distribution could be different from the estimate from any one sample.
- However, there is a link between population moments and sample moments, despite sampling uncertainty.
This link is derived using asymptotic theory or the theory of large-samples.

