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Recap

Likelihood functions are based on the probability of
observing the data.
The first step is fixing a probability distribution, f (θ) where
θ is the parameter defining the probability distribution.
For a given dataset, (Y1,Y2, . . . ,YN), the probability of
observing the dataset, given θ is:

fθ(Y1,Y2, . . . ,YN)

This is a statement in outcome-space.
The likelihood function turns this around:
LY1,Y2,...,YN (θ) = fθ(Y1,Y2, . . . ,YN)
L is a statement in parameter-space.
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Example: likelihood for a Bernoulli distribution

For eg., for a Bernoulli distribution, the probability
distribution is:

fθ(y) = θy (1− θ)(1−y)

Given a sample of N observations, the joint distribution of
(Y1,Y2, . . . ,YN) is:

fθ(~Y ) = Πi=N
i=1 f (Yi = yi)

= Πi=N
i=1 θ

yi (1− θ)(1−yi )

Example, suppose (~Y ) = (0,0,0,1,0,0,1,1).
What is fθ(~Y )?

fθ(~Y ) = Πi=N
i=1 f (Yi = yi)

= (1− θ)5θ3

= L
(~Y )

(θ)
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Estimation using the likelihood approach

The likelihood approach asks: What value of θ makes the
dataset (~Y ) most probable?

θ̂ = arg max L
(~Y )

(θ) = f (θ; ~Y )

Likelihood estimation: What value of θ makes (~Y ) most
probable?
Usual approach: maximise the function wrt θ, set it to zero.
This is the Maximum Likelihood Estimation of parameter θ.
Usually referred to as MLE.
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Example of MLE for a Bernoulli distribution

Example, Bernoulli distribution. Dataset:
(~Y ) = (0,0,0,1,0,0,1,1).
Here, the likelihood function, L

(~Y )
(θ) = (1− θ)5θ3.

Log is a monotonic transformation that makes it simpler to
work with.
Log likelihood function is
log(L)

(~Y )
(θ) = 5 ∗ log(1− θ) + 3 ∗ log(θ)

Maximise the function for θ – differentiating it wrt θ:

log(L)
(~Y )

(θ) = 5 ∗ log(1− θ) + 3 ∗ log(θ)

δ log(L)/δθ = 0 = −5/(1− θ̂) + 3/θ̂
0 = −5θ̂ + 3(1− θ̂)

θ̂ = 3/8 = 0.375

Susan Thomas Likelihood functions



Generalising the MLE for the Bernoulli distribution

Given a generic data set, ~Y = (Y1 ≤ y1, . . . ,YN ≤ yN),
given they are distributed bernoulli with parameter θ:

L(Y1≤y1,...,YN≤yN )(θ) = Πi=N
i=1 P(Yi ≤ yi)

= Πi=N
i=1 θ

yi (1− θ)(1−yi )

= θ
PN

1 yi (1− θ)
PN

1 (1−yi )

But ȳ =
1
N

N∑
1

yi

L(Y1≤y1,...,YN≤yN )(θ) = θnȳ (1− θ)n(1−ȳ)

Transforming into log space

log L(Y1≤y1,...,YN≤yN )(θ) = nȳ log θ + (1− ȳ) log (1− θ)
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The MLE of the generic bernoulli distribution

Maximising log L wrt θ gives:

δ log L/δθ = n
(

ȳ
θ
− 1− ȳ

1− θ

)
n
(

ȳ
θ̂
− 1− ȳ

1− θ̂

)
= 0

θ̂ = ȳ

(Cross-check that it is the maximum? Calculate the second
derivative of log L(θ) wrt θ and check that it is negative at θ̂.)
θ̂ is the value of the distribution parameter that maximises
the value of the likelihood function.

θ̂mle = ȳ

This expression for θ is called the estimator.
The specfic value of θ̂ for the given sample is called the
estimate.
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Point 1 to remember about the likelihood function

The MLE does not give the "most probable" value of θ. It
gives the under which the sample is the most likely. Ie, the
likelihood is maximised.
MLE is not magic: all the problems of inference from
sample remain with us.
For example: I tossed a coin 10 times and got 9 heads.
Using this data, the MLE gives p̂ = 0.9.
MLE does not eliminate sampling noise, or give us the
truth. It’s just a decent estimator.
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Point 2 to remember about the likelihood function

Since f () is a joint probability, we will always have
log L(θ : Xi) > 0.
But we can have log L(θ : Xi) > 1.
Remember that f (x) is a pdf, but g(θ) is not! Specifically,
integrating over parameter space,∫ ∞

−∞
L(θ)dθ 6= 1!
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Back to the econometrician’s checklist of tasks

In defining and applying the likelihood approach, we have
executed Step 1: ie, estimated the economic model.
Step 2 is validating the hypothesis: ie, inference.
For example, in the economic problem using the number of
girls vs. boys among newly borns, the hypothesis was that
the probability of a girl being born is 50%. Ie, θ = 0.5.
In our dataset, ȳ = 48.74%
Inference asks the question: is the sample esimate
statistically different from the hypothesis?
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Approach to implementing statistical inference

Consider a “restricted” model estimation: we set

θ = 0.5

Under θ = 0.5 we can calculate the joint probability of
observing ~Y . This becomes the likelihood value of the
“restricted” model.
We have already calculated the likelihood of the
“unrestricted” model – which is

θ̂ = ȳ

Statistically test whether the value of “unrestricted” model
likelihood is significantly different from the “restricted”
model likelihood.
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Approach to implementing statistical inference

A popularly used test is called the “log-likelihood” ratio test,
or the LR test statistic:

LR = −2 log (Lrestricted/Lunrestricted)

We can calculate the value for both.
Question: what do we expect it to be?
In our dataset of fraction of girl vs. boy newborns, the
likelihood values are:

log LR = −496290.6
log LU = −496033.8

LR = 513.6

Questions: is this a large difference?
The answer comes from theorems on what distributions we
can expect for likelihood statistics.
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Distributions of sample estimates
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Population parameters and sample estimates

Given a population distribution, f (x) and a sample from
that population, we know:

f (x) is a deterministic function of the PD/PDF.
But f̂ (x) is a random variable, which is the function of the
sample!
f (x) is always the same for a given x .
f̂ (x) varies depending upon the sample.

This is also true for moments of the population and the
sample.
For instance, the first moment of a distribution is E(x).
E(x) = µ is a deterministic function of the PD/PDF.
E(~x) = µ̂ varies in value from sample to sample.
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Population parameters and sample estimates

Therefore, a sample moment is an estimate, which is a
random variable.
Like all rv, every estimate has to have a expected value
and a variation around the expected value.
This is unlike the case of the population distribution, which
has a well-defined expected value, and therefore, no
variance.
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Population parameters and sample estimates

Example of the fraction of girl vs. boy births,
E(y) = µ̂y =

∑N
i=1 yi = 0.4876

Variance of y = E(y − µ̂y )2 = E(y)2 − E(µ̂y )2

This works out to be 0.4876− 0.48762 = 0.25
This is interpreted as:
Across different samples of size N, we expect that the
mean E(y) will be 0.4876.
But since E(y) will be different for different samples, there
will be a range of values of E(y) around 0.4876, which is
determined by σ = 0.5
This implies that the expected fraction of girl to boy births
in the population distribution could be different from the
estimate from any one sample.
However, there is a link between population moments and
sample moments, despite sampling uncertainty.
This link is derived using asymptotic theory or the theory of
large-samples.
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