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Recap

The model is estimated by applying the likelihood
approach.
Estimators are functions of the data.
Estimators are also called statistics.
Estimates are the values of the estimator for a given set of
data.
Estimates are random variables, with some distribution.
Inference is the link between the estimate (from a sample)
to the population parameter.
Inference is based on statistical theory of large numbers.

Susan Thomas The basics of statistical inference



Key results in asymptotic theory

Two useful results in probability that form the statistical
base of econometric inference:

1 Law of large numbers.
2 Central limit theorem.
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Theorem #1: Law of Large Numbers

Let (Y1,Y2, . . . ,YN) be random variables that are independent
and identically distributed.
Let the distribution have expectation E(Y ) = θ.
Then, if Ȳ is the sample average, calculated as:

Ȳ =
1
N

N∑
i=1

Yi

As N →∞,
P(|Ȳ − θ| < δ)→ 1, ∀δ > 0

We say that Ȳ converges in probability to θ.
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Interpreting the LLN

We assume that all the observations are drawn from
exactly the same distribution.
LLN says that
the difference between the sample mean (Ȳ ) and the
population mean (θ)
keeps shrinking (or becomes less than δ, which we take as
a very small number, δ = 0.0001).
as the sample size gets larger (n→∞)
with probability one.
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Theorem #2: Central Limit Theorem

Let (Y1,Y2, . . . ,Yn) be random variables that are independent
and identically distributed.
The distribution is assumed to have expected value θ and finite
variance, σ2

If the sample average is Ȳ calculated as:

Ȳ =
1
n

n∑
i=1

Yi

As n→∞,

P

(
Ȳ − θ√
σ2/n

≤ x

)
→ P(X ≤ x), ∀x ∈ R

where X ∼ N[0,1]

We say that Ȳ is asymptotically distributed as N[θ, σ2/n].
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Interpreting the CLT

We assume that all the observations are drawn from
exactly the same distribution.
The CLT holds true for the sum of a set of rvs.
The distribution of the rv can be one out of a broad range
of distributions. The rv does not have to the gaussian
distributed.
Even though the CLT states it is true as n→∞, it works
well even in finite samples for a symmetric distribution.
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Sampling distributions to population distribution

Using the LLN and CLT, we can get the sampling
distribution for any sample statistic/estimate.
For example, consider the mean estimator of a univariate
distribution, µ = E(x) =

∑
i xi/n.

Generically, the sampling distribution for the sample mean
can be derived as:
If (x1, . . . , xn) are a sample of rv from a population with
constant mean µ and variance σ2, then the sample mean x̄
is rv with a distribution with mean µ and variance σ2/n.
Further, we set a restriction on the variance being finite
using the CLT and get: If (x1, . . . , xn) are a sample of rv
from a population with constant mean µ and finite variance
σ2: then the sample mean x̄ is rv, distributed as gaussian
with mean µ and variance σ2/n.
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Distribution for estimates based on a
Bernoulli rv
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Recap: important parameters of a distribution

Mean or expected value: E(x) = µ

Variance: E [(x − µ)2] = σ2

Standard deviation: σ
Skewness: E [(x − µ)3]

Kurtosis: E [(x − µ)4]
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E(θ̂) of a Bernoulli rv sample

For a Bernoulli rv, y , E(y) = θ.
The sample mean, θ̂ = E(ȳ). What is it’s distribution?
Expected value of θ̂:

E(θ̂) = E(ȳ) = E(
1
n

n∑
i=1

Yi)

=
1
n

n∑
i=1

E(Yi)

=
1
n

n∑
i=1

θ = θ
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Var(θ̂) of a Bernoulli rv sample

Variance of θ̂ = var(θ̂)

var(θ̂) =
1
n2 var

(
n∑

i=1

Yi

)
Because they are iid

var(θ̂) =
1
n2

(
n∑

i=1

var(Y1)

)

=
θ(1− θ)

n

The standard deviation of θ̂ is called the standard error of
the estimator.
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Interpreting E(ŷ) for a Bernoulli rv

E(ŷ) = θ
The expected value of the sample mean is the population
mean.
This is irrespective of the value of θ. We say that θ̂ is an
unbiased estimator of θ.
(Note: We didn’t asymptotic theory to make this
statement.)

Susan Thomas The basics of statistical inference



Interpreting E(ŷ)2 for a Bernoulli rv

The standard error of θ̂ is:

se(θ̂) =

√
θ(1− θ)√

n

Higher n, the lower the statistical uncertainty of θ̂ around θ.
Using Chebyshev’s inequality, given a rv θ̂ and a positive
constant σ, we can say:

P(µ− kσ ≤ θ̂ ≤ µ+ kσ) ≥ 1− 1
k2

(Note: We can choose any k such that the range of values
for θ̂ will fall between µ+ kσ and µ− kσ.)
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Interpreting E(ŷ)2 for a Bernoulli rv

Using CLT, we refine this:
We create a standardised form of z = θ̂ as:

z = (θ̂)/se(θ) = (θ̂)/(σ2/n)

Then:

z =

√
(θ̂ − θ)/((θ(1− θ)/n)

= n
√
θ̂ − θ/

√
(θ(1− θ))

∼ N(0,1)

Now we know that setting k = 2, we cover a little more
than 95% of probable θ values. Or,

P

[(
θ − 2

√
θ(1− θ)

n

)
≤ θ̂ ≤

(
θ + 2

√
θ(1− θ)

n

)]
≈ 95%
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Interval based inference about girl vs. boy birth
probabilities: the UK dataset

E(y) = µ̂y =
∑N

i=1 yi = 0.4876
Variance of y = E(y − µ̂y )2 = E(y)2 − E(µ̂y )2 = 0.25
Is this statistically different from θ = 0.5?
From the CLT, we know that the sampling distribution of the
θ̂ estimate is a normal distribution.
Using this, we calculate that with 95% confidence, the
range of θ can be derived from this sample as:

0.4862 ≤ θ ≤ 0.4886

θ = 0.5 does not fall in this range.
Therefore, it appears unlikely that the probability of a girl
child being born is the same as the probability of a boy
child being born.
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Things to remember about interval estimates

The interval is a rv: the range values change from sample
to sample.
The inference statements says:
Across repeated samples, there is a “confidence level”%
that the interval will contain the population parameter.
However, there is no direct link between confidence
intervals and probability theory.
Thus, inference falls back upon statistical tests like the LR
test.
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Hypothesis testing for estimation statistics
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The distribution for the LR-test statistic

The LR test statistic is calculated as

LR = −2 log (Lrestricted/Lunrestricted)

It can be shown that the LR test has the same distribution
as a standardised normal variable:[√

n(θ̂ − θ)√
θ(1− θ)

]2

The above has the form of a squared standard normal rv.
The distribution of a squared standard normal rv is a “χ2”
distribution with one degree of freedom.
Therefore, the calculated value of the LR test statistic can
be compared with a “critical value” of the χ2(1) distribution.
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Features of the χ2(n) distribution

If x ∼ N(0,1), then z = x2 ∼ χ2(1).
First and second moments of a χ2(1) distribution:

E(z) = 1
E((z − E(z)2) = 2

If y =
∑n

i xi and xi ∼ N(0,1), and xi are independent
draws, then y ∼ χ2(n).
First and second moments of a χ2(n) distribution:

E(y) = n
E((y − E(y)2) = 2n

If x1 ∼ χ2(n1) and x2 ∼ χ2(n2), x1, x2 are independent,
then

y = x1 + x2 ∼ χ2(n1 + n2)
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Derivatives of the χ2(n) and N(µ, σ2) distributions

If x1 ∼ χ2(n1) and x2 ∼ χ2(n2), x1, x2 are independent,
then

y =
x1/n1

x2/n2
∼ F(n1,n2)

F-distribution has two degrees of freedom, n1,n2.
If x ∼ χ2(n), and z ∼ N(0,1), and x , z are independent,
then

y =
z√
x/n

∼ t(n)

t-distribution has one degree of freedom, n.
Fact: if x ∼ t(n), then x2 ∼ F (1,n)

χ2(n), t(n),F (n1,n2) are all small-sample distributions.
As the sample size tends to∞, each of these converge to
other distributions. For example, t(n)→ N(0,1) as n→∞.
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Hypothesis testing syntax

The model or the hypothesis that we start the estimation
with is called the null. It is denoted as H0.
For example, H0 = a where “a” is a specified value.
Counter to the null is the alternative hypothesis, denoted
H1.
Sometimes H1 is explicitly specified as H1 = b. By default,
H1 =!H0 6= a.
The test is a procedure which is a function of the sample
data, which determines whether to accept H0 or not.
For example, reject H0 if the sample statistic is “too far”
away from a.
In the classical approach, the test also splits the sample
statistic space into “a rejection” (or “critical”) region and an
“acceptance” region.
If the statistic is in the “acceptance” region, H0 is accepted
as true.
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Hypothesis testing syntax

The statistic is based on a random sample, and so is
random itself.
Thus, the same test can give different results for different
samples.
Totally, there could be four different kinds of outcomes for
the test results vs. the “truth”.

Accept Reject
Truth No problem Type I
False Type II No problem
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Hypothesis testing syntax

Out of these, we worry about the errors and try to quantify
them:

Size of the test: Probability of a Type I error.
Denoted as α. Also called the “significance level” of the test.
Power of the test: Probability of that a Type II error will not
happen – the test will reject the null if it is not true.
Probability of a Type II error is denoted as β.
Power is denoted as 1− β.

The econometrician chooses α.
Type I errors can be eliminated by making the rejection
space very small.
This increases the probability of Type II errors.
For a given sample, and a given α, we choose a procedure
to make β as small as possible.
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Applying hypothesis testing to the UK girl vs. boy birth
dataset

The LR statistic is

LR = −2 log (Lrestricted/Lunrestricted)

H0 : θ = 0.5.
In our dataset of fraction of girl vs. boy newborns, the
likelihood values are:

log LR = −496290.6
log LU = −496033.8

LR = 513.6

Does the sample support or reject H0?
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Applying hypothesis testing to the UK girl vs. boy birth
dataset

The sample test statistic is compared against a χ2(1)
which has the following values at different levels of
significance:

α

P(χ2(1) > x) 0.10 0.05 0.01
x 2.706 3.841 6.635

At a 95% confidence level, the LR-statistic distribution
value to not reject the null is 3.84 or less.
The sample gives a value of 513.6.
This is much larger than the expected χ2(1) value.
We reject the null of equal probability of seeing girls
amongst new borns as compared with boys.
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Hypothesis testing syntax

An unbiased test: If the power of the test is greater than
the size of the test for all values of parameters.
A consistent test: If the power of the test becomes 1 as n
becomes∞.
The most powerful test: A test with highest power among
the set of all tests with the same aim.
Most of the time, we try for unbiased and consistent tests.
MP tests are difficult to establish.
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