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Recap

Every estimator generates estimates based on the sample.
Estimates are rv, which have a distribution.
Statistical inference is about understanding the distribution
of estimators for a given sample size.
Inference is based on statistical theory: Law of Large
Numbers (LLN) and the Central Limit Theorem (CLT).
For example, CLT: as n→∞, distribution of sample mean
generated by any distribution with finite mean µ and
variance σ2 tends to N(µ, σ2/n).
Theory also tells us the sampling distribution of some MLE
statistics. For eg., the LR ∼ χ2(n).
All sampling distributions have limiting distributions.
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Recap

Inference involves testing a null hypothesis: H0

Estimators are selected based on the kind of errors they
minimise:

1 Type I error: rejecting H0 when it is true. (Leads to size of
the test of the estimator.)

2 Type II error: accepting H0 when it is false. (Leads to the
power of the test of the estimator.)

Estimators are based on minimising the errors. Some
features of a good test of an estimator are tests of:
unbiasedness, consistency, power.
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Attributes used to compare estimators

“Finte sample properties” of an estimator: can be used to
compare estimators independent of sample size.
“Asymptotic properties”: features of the estimator that are
not known in finite sample.
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Finite sample properties of estimators

Unbiased estimators: An estimator of parameter θ is
unbiased if its sampling distribution mean is the population
parameter itself.

E(θ̂) = θ

Every estimator θ̂ can be written as

θ̂ = θ + B

where B(θ̂) is the bias, where B(θ̂) = E(θ̂ − θ).
Then the condition of unbiased estimator can also be
written as:

E(θ̂ − θ) = Bias(θ̂|θ) = 0

Efficient unbiased estimators: One estimator, θ̂1 of θ is
more efficient than another estimator, θ̂2 if the sampling
distribution variance of θ̂1 is less than the variance of θ̂2

var(θ̂1) < var(θ̂2)
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MSE of an estimator

Mean squared error of estimators, MSE, is defined as:

MSE = E(θ̂ − θ)2

Then:

var(θ̂) = E(θ̂ − E(θ̂))2 = E(θ̂ − (θ + B))2

var(θ̂) = E(θ̂ − θ − B)2

= E(θ̂ − θ)2 − 2E(θ̂ − θ)B + B2

var(θ̂) = E(θ̂ − θ)2 − B(θ̂)2

or E(θ̂ − θ)2 = MSE(θ̂) = var(θ̂) + Bias(θ̂)2

Usually, the estimator is selected based on minimum MSE.
If the estimator is unbiased, then MSE(θ̂) = var(θ̂).
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Example: Comparing estimators for µ of a normal
distribution

Two estimators:
1 θ̂1 = first observation in the sample of size n.
2 θ̂2 = 1

n

∑n
i=1 xi

Biasedness:
1 E(θ̂1) = E(x1) = µ
2 E(θ̂2) = E( 1

n

∑n
i=1 xi ) = 1

n

∑n
i=1 E(xi ) = µ

Both estimators are unbiased.
Efficiency:

1 var(θ̂1) = var(x1) = σ2

2 var(θ̂2) = var( 1
n

∑n
i=1 xi ) = 1

n2

∑n
i=1 var(xi ) = σ2/n

var(θ̂2) < var(θ̂1).
θ̂2 is the more efficient estimator.
Statistical theory defines lower bounds on the minimum
variance that an unbiased estimator can achieve for a
parameter.
This is the Cramer-Rao bound.

Susan Thomas Properties of estimators



The Cramer-Rao lower bound

For a rv x which has a density distribution that satisfies
some regularity conditions:

1 f (x) has continuous second derivatives.
2 θ is not at the boundary of possible parameter values
3 The range of x does not depend upon θ.
4 Conditions on the third derivative of ln L that allow the

calculation of the Taylor series, and the truncation of the
Taylor series beyond the second derivative.

Then, the variance of an unbiased estimator of θ will
always be greater than, or equal to,

[I(θ)]−1 =

(
−E

[
∂2 ln L(θ)

∂θ2

])−1

Where I(θ) is called the Fisher Information value.
And the variance bound is the inverse of the Fisher
Information value.
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Interpretation of the Fisher Information

For l(θ) = ln L(θ), that has a first derivative in θ of l ′(θ̂) and
second derivative of l ′′(θ̂), the Taylor expansion is:

l(θ) = l(θ̂) + l ′(θ̂)(θ − θ̂) +
1
2

l ′′(θ̂)(θ − θ̂)2 + . . .

At the top of the likelihood function, l ′(θ̂) = 0.

l(θ) ≈ l(θ̂) +
1
2

l ′′(θ̂)(θ − θ̂)2

The behaviour of l(θ) in the neighbourhood of θ̂ is largely
determined by l ′′(θ̂), a measure of the local curvature of l .
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Interpretation of the Fisher Information

If the dataset and the model are very strong, as we move
away from θn, l(θ) would drop off sharply.
This is a case where there is a lot of information, i.e. I is
large.
The variance of the estimator θ̂ will be small if it’s Fisher
information value I(θ̂) is large. Ie, θ̂ is more efficient.
If I(θ̂) is small instead, it means that the likelihood function
has a slow flat top where we didn’t really know θ̂n from
other values around it.
This makes for a less efficient estimator.
The larger the Fisher Information, the easier it is to identify
an efficient estimator for θ.
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Example: Cramer-Rao bound for the Bernoulli MLE

We know that the Bernoulli likelihood function is:

ln L(θ) =
n∑

i=1

yi ln θ +
n∑

i=1

(1− yi) ln (1− θ)

Calculating the Fisher Information for this:

∂ ln L/∂θ =

(∑n
i=1 yi

θ
−
∑n

i=1(1− yi )

1− θ

)
∂2 ln L/∂θ2 =

(
−
∑n

i=1(1− yi )

(1− θ)2 −
∑n

i=1 yi

θ2

)
I(θ) = −E

[
−
∑n

i=1(1− yi )

(1− θ)2 −
∑n

i=1 yi

θ2

]
=

[
1

θ(1− θ)

]
Cramer-Rao bound sets the variance as I(θ)−1 = θ(1− θ)
The Cramer-Rao lower bound does not apply to the
Bernoulli when θ = 1.
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Example: Cramer-Rao bound for the Poisson
Distribution

If x is distributed as Poisson, P(θ), where

f (x) =
e−θθx

x!

What is the Cramer-Rao lower bound for a θ estimator?
ln L = −nθ +

(∑n
i=1 xi

)
ln θ −

∑n
i=1 ln (xi !)

∂ ln L/∂θ = −n +
Pn

i=1 xi
θ

∂2 ln L/∂θ2 = −
Pn

i=1 xi
θ2

Cramer-Rao bound, I(θ)−1 = −E
(
−

Pn
i=1 xi
θ2

)−1

E(xi) = θ for a Poisson distributed rv.
Variance = CR bound = θ/n
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Implications of the Cramer-Rao lower bound

If a likelihood function can be defined for the rv, such that
the ln L(θ) is differentiable in θ, then we can calculate the
lowest possible variance for any estimator for θ.
If there exists an estimator that achieves the Cramer-Rao
lower bound, then it is the most efficient estimator for θ.
If there exists a linear estimator (ie, a linear function of the
data) which has minimum variance among linear unbiased
estimator, it is called the best linear unbiased estimator,
BLUE.
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Properties of the Maximum Likelihood
Estimator, MLE
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Properties of MLE

1 Consistency:
plimθ̂mle = θ

2 Asymptotic normality: this is derived from the CLT where
the sampling distribution of the MLE is:

θ̂mle ∼ N[θ, [I(θ)]−1]

3 Asymptotic efficiency: MLE achieves the Cramer-Rao
lower bound of variance for an estimator.

4 Invariance: the MLE of a function of θ is the function
evaluated at θmle.
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Consistency of the MLE

Under fairly general conditions, the MLE is consistent.
Wald’s consistency theorem : the MLE is consistent if lt
satisfies certain regularity conditions, θ is restricted to lie in
a compact space, and the model is asymptotically
identified.
How can consistency of the MLE break?

1 With models where the number of parameters rises with n,
2 With models which have characteristics that are not

identified asymptotically.
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Asymptotic efficiency of MLE

The maths: If θn is the MLE of θ based on a ramdom
sample of size n from the distribution of x , and if I(θ) is the
Fisher information, then if we define:

Zn =
(θ̂n − θ)√

1/nI(θ)

Given that f (x) follows the Cramer-Rao regularity
conditions,

lim
n→∞

P(Zn ≤ x) = Φ(x) ∀x ∈ R

The english: For rv x drawn from f (x) that satisfies the
Cramer-Rao smoothness conditions, and a large sample
size n, the sampling distribution of the MLE is
approximately gaussian with mean θ and variance equal to
the Cramer-Rao lower bound.
Ie, the MLE is asymptotically efficient.
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Example: Efficiency of the Bernoulli MLE

Y is a sample of size n drawn from a Bernoulli distribution
with parameter, p.
The MLE for p is p̂ =

∑n
i=1 yi .

Then according to the CR bound, variance for p̂mle is
(nI(θ))−1 = p̂(1− p̂)/n
Then, the 100(1− α)% confidence interval is:

p̂ ± z(α/2)

√
p̂(1− p̂)

n
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