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Recap

Properties of estimators: unbiasedness, efficiency.
The Cramer Rao lower bound and the Fisher Information
number
Properties of MLE: consistency, asymptotic efficiency,
invariance
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MLE of the gaussian distribution
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Economic problem: A model for wages

Wages are observations in the positive real number space.
Distribution: continuous, positive only – log normal.
Log(wages): normal distribution where

f (w) =
1√

2πσ2
e−

(w−µ)2

2σ2 ∀µ ∈ R, σ2 ∈ R+

Setting up the model for log(wages), w :
1 independence
2 identical distribution
3 normally distributed

Parameter space for the estimation of the model: µ, σ2.
What is the MLE for µ, σ2?
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The likelihood function for the normal distribution

Each w has a probability, f (w) = 1√
2πσ2 e−

(w−µ)2

2σ2

Likelihood, L is Lw1,w2,...,wN (µ, σ2)

Lw1,...,wN (µ, σ2) =
n∏

i=1

1√
2πσ2

e−
(w1−µ)2

2σ2 ∗ . . . ∗ 1√
2πσ2

e−
(wN−µ)2

2σ2

The log likelihood, l = ln L, is

lw1,...,wN (µ, σ2) = −n
2

ln 2πσ2 − 1
2σ2

n∑
i=1

(wi − µ)2
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The likelihood function for the normal distribution

For the MLE, we need to differentiate lw1,...,wN (µ, σ2) by µ,
and σ2.

∂lw1,...,wN (µ, σ2)/∂µ

∂lw1,...,wN (µ, σ2)/∂σ2

and set each to zero.
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MLE for µ

The first derivative of lw1,...,wN (µ, σ2) wrt µ is:

∂

∂µ

(
lw1,...,wN (µ, σ2)

)
=

∂

∂µ

(
− 1

2σ2

n∑
i=1

(wi − µ)2

)

0 = − ∂

∂µ

(
n∑

i=1

(wi − µ)2

)

The term
∑n

i=1(wi − µ)2 is called the sum of squared
errors, SSE.
Maximimising the likelihood function is the same as
minimising the SSE.
It is quadratic in µ. This will have a unique minimum.
We find: µmle =

∑n
i=1 wi/n = ŵ

The MLE for µ is the sample mean.
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Features of the MLE for µ

Like in the case of the Bernoulli model, the sample mean
ŵ is the ML solution for the gaussian model as well.
Since it minimises the SSE, it is also called the
least-squares estimator.
More typically, it is called the ordinary least-squares or
OLS estimator.
HW: We know the solution is unique for a quadratic. Prove
it using the second derivative of lw1,...,wN (µ, σ2).
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Features of the MLE for σ2

The first derivative of lw1,...,wN (µ, σ2) wrt σ2 is:

∂

∂σ2 lw1,...,wN (µ, σ2) = − n
2σ2 +

1
2σ4

n∑
i=1

(wi − µ)2

Setting this to zero, we get:

σ̂2 =
1
n

n∑
i=1

(wi − µ)2

We replace µ with µmle = ŵ and get:

σ̂2 =
1
n

n∑
i=1

(wi − µmle)2 =
1
n

n∑
i=1

(wi − ŵ)2

HW: Show that the sample variance maximises the
likelihood function.
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Information matrix for the normal distribution

We have two parameters, µ, σ2. Therefore, the second
derivative of the log likelihood function has three terms:

∂2/∂µ2, ∂2/∂µσ2, ∂2/∂σ4

These are:

∂2/∂µ2 =
−n
σ2

∂2/∂µσ2 =
−1
σ4

n∑
i=1

(wi − µ)

∂2/∂(σ2)2 =
n

2σ4 −
1
σ6

n∑
i=1

(wi − µ)2
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Inference for the MLE µmle, σ
2
mle

The Cramer-Rao bound for the MLE estimators is defined
as a 2x2 matrix as follows:

[I(θ)]−1 =

[
∂2l/∂µ2 ∂2l/∂µσ2

∂2l/∂σ2µ ∂2l/∂σ4

]
For the MLE of the normal distribution, this is

[I(θ)]−1 =

[
σ2/n 0

0 2σ4/n

]
The sampling distribution of the MLE is set by this bound.
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Inference for µmle

E(µmle) = E(
∑n

i=1 wi/n) = nµ/n = µ
Thus, the MLE is an unbiased estimator of µ.
var(µmle) = var

∑n
i=1(wi/n) = σ2/n

Under the CLT, the sampling distribution for µmle is:

µ̂− µ√
σ2/n

=
√

n
(
µ̂− µ
σ

)
∼ N(0,1)
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Inference for µmle

We have two estimators for σ2 – the ML estimator for σ2

and the sample variance σ̂2:

σ2
mle =

n∑
i=1

(wi − ŵ)2/n

σ̂2 =
n∑

i=1

(wi − ŵ)2/(n − 1)

where σ̂2 = n/(n − 1)σ2
mle.
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Inference for µmle

Theoretically, it can be shown that

µ̂− µ√
σ̂2/n

∼ t [n − 1]

The t-distribution can be used to determine the 95%
confidence intervals for small samples.
However, since the t-distribution tends rapidly to the
standard normal (for n > 10), the 95% confidence interval
becomes:

µ̂− 2σ̂/
√

n ≤ µ ≤ µ̂+ 2σ̂/
√

n
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Inference for σ2
mle

There are two estimators for σ2 of the normal distribution:
σ2

mle and σ̂2.
Are they both unbiased?

σ2
mle =

(n − 1)

n
σ̂2

E(σ2
mle) < E(σ̂2)

The MLE is biased slightly downward compared to the
sample variance, which is an unbiased estimate.
Are they both efficient?

var(σ2
mle) =

(
n − 1

n

)2

var(σ̂2)

var(σ2
mle) < var(σ̂2)

The MLE variance is lower than the sample variance. MLE
is more efficient.
Software report σ̂2 as the estimation variance.
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