MLE for a logit model

Susan Thomas
IGIDR, Bombay

September 4, 2008

Goals

- The link between workforce participation and education
- Analysing a two-variable data-set: bivariate distributions
- Conditional probability
- Expected mean from conditional probabilities
- The logistic function
- MLE for the logistic problem

The problem of workforce participation

Economic problem: A model for workforce participation

- Variable, Y_{i} : the participation of women in the workforce.
- $Y_{i}=0$ if the woman does not participate in the workforce.
- $Y_{i}=1$ if the woman is a part of the workforce.
- Y_{i} is binary, which means a Bernoulli distribution

Economic problem: Dataset on eduction and workforce participation

- For every observation i, Y_{i} is observed along with $X_{i}=$ education of the woman.
This is measured by years of schooling.
- X_{i} is an integer, taking values from " 0 " - no years of school, to "12" - High School, to " 13 " and beyond - "College".
- The data on education is grouped into 7 categories and has the following frequency distribution:

Y_{i} / X_{i}	$0-7$	8	$9-11$	12	$13-15$	$16-19$	≥ 20
0	256	180	579	1228	463	219	7
1	143	127	560	1858	858	665	41

- There are a total of 7184 observations.

Economic problem: predicting workforce participation

- Question: Is there a relationship between a woman's workforce participation and her eduction (Y_{i} and X_{i})?
- Question: If we know how many years of education a woman has had $\left(X_{i}\right)$, what is her expected workforce participation $\hat{E}\left(Y_{i}\right)$?
- We would like to model expected workforce participation, conditional on her education.
We need statistical models of conditional expectations, $\hat{E}(Y \mid X)$.

Statistical underpinnings

Creating conditional probabilities

- $E(Y \mid X)=\sum_{i=1}^{l} Y_{i} f(Y \mid X)$ where $f(Y \mid X)$ is called the conditional probability of Y given X.
- In order to calculate conditional expectations, we need to know conditional probabilities.
- In order to estimate conditional probabilities, we need to understand conditional frequency distribution/densities.

Creating conditional probabilities for the dataset

- We change from number of observations to frequencies:

Y_{i} / X_{i}	$0-7$	8	$9-11$	12	$13-15$	$16-19$	≥ 20
0	0.04	0.03	0.08	0.17	0.06	0.03	0.00
1	0.02	0.02	0.08	0.26	0.12	0.09	0.01

- The sum of all the elements add up to 1 . These are the joint frequencies or joint probabilities of observing workforce participation and education.
- We get the distribution of workforce participation (or education) by summing the row elements (or column elements) as:

Y_{i} / X_{i}	$0-7$	8	$9-11$	12	$13-15$	$16-19$	≥ 20	$\hat{f}(Y)$
0	0.04	0.03	0.08	0.17	0.06	0.03	0.00	0.41
1	0.02	0.02	0.08	0.26	0.12	0.09	0.01	0.59
$\hat{f}(X)$	0.06	0.04	0.16	0.43	0.18	0.12	0.01	1

- The last row is the marginal frequency distribution of X. The last column is the marginal of Y.

Conditional probabilities/frequencies

- Conditional information: making a statement about Y given we know X.
- Example, what is the frequency of workforce participation of women who have 8 years of education?
- This is written as $f(X=8)$.

The sample frequency is $f(X=8)$.

- We use the relationship:

$$
f(Y \mid X)=\frac{f(Y, X)}{f(X)}
$$

Sample conditional probabilities

- The data is given as:

Y_{i} / X_{i}	$0-7$	8	$9-11$	12	$13-15$	$16-19$	≥ 20	$\hat{f}(Y)$
0	0.04	0.03	0.08	0.17	0.06	0.03	0.00	0.41
1	0.02	0.02	0.08	0.26	0.12	0.09	0.01	0.59
$\hat{f}(X)$	0.06	0.04	0.16	0.43	0.18	0.12	0.01	1

- The data set gives

$$
\begin{aligned}
\hat{f}(y=0, x=8) & =0.025 \\
\hat{f}(y=1, x=8) & =0.017 \\
\hat{f}(x=8) & =0.042
\end{aligned}
$$

- Then, the sample conditional frequency distribution of workforce participation of women with 8 years of education is:

Y	0	1
$\hat{f}(Y \mid X=8)$	0.59	0.41

- This is a Bernoulli with a "success" rate of 0.41%.

Sample conditional probabilities for all X

- We can calculate the conditional frequency distribution for each value of X as:

$\hat{f}(Y \mid X) / X_{i}$	$0-7$	8	$9-11$	12	$13-15$	$16-19$	≥ 20
$\hat{f}(Y=0 \mid X)$	0.64	0.59	0.51	0.40	0.35	0.25	0.15
$\hat{f}(Y=1 \mid X)$	0.36	0.41	0.49	0.60	0.65	0.75	0.85

- Conditional frequencies add up to 1 for a given X.
- In the above table, we notice that as years of education increase, the probability of workforce participation increases also.

Calculating the expected value

- As always, the focus of our analysis/estimation is the expected value of workforce participation.
- Generally, expectation $\hat{E}(Y)$ is:

$$
\hat{E}(Y)=\sum_{k=1}^{K} Y_{k} \hat{f}\left(Y_{k}\right)
$$

- Here, the problem is different, because we observe how many years of education the person has had. We want to calculate the expectation of Y conditional on observed X. This is:

$$
\hat{E}\left(Y \mid X=x_{j}\right)=\sum_{k=1}^{K} Y_{k} \hat{f}\left(Y_{k} \mid x_{j}\right)
$$

Calculating the expected value

- The unconditional expectation of Y then becomes:

$$
\begin{aligned}
\hat{E}(Y) & =\sum_{j=1}^{J} \hat{E}\left(Y \mid X=x_{j}\right) \hat{f}\left(x_{j}\right) \\
& =\sum_{j=1}^{J}\left(\sum_{k=1}^{K} Y_{k} \hat{f}\left(Y_{k} \mid x_{j}\right)\right) \hat{f}\left(x_{j}\right)
\end{aligned}
$$

This is the Law of Iterated Expectations.

- Given the sample conditional expectation of Y for every value of X, and the marginal frequency of X, we can calculate the unconditional expectation of Y.
- Conditional density of Y is

$$
f(Y \mid X)=\frac{f(X, Y)}{f(X)}
$$

- Indepence:

$$
f(X, Y)=f(X) f(Y)
$$

Joint is a product of the marginals.

- This implies that under independence, the conditional density of Y is the same as the marginal density of Y.

$$
f(Y \mid X)=\frac{f(X, Y)}{f(X)}=\frac{f(X) * f(Y)}{f(X)}=f(Y)
$$

- Under independence, the conditional expectation of Y is the same as the unconditional expectation of Y.

$$
E(Y \mid X)=E(Y)
$$

The logistic function for a binary dependent variable

Defining the odds

- Odds are a term that can be defined for a binary variable as follows:

$$
\frac{\hat{f}\left(Y_{i}=1\right)}{\hat{f}\left(Y_{i}=0\right)}
$$

- More generally, we say it is the ratio of conditional frequencies:

$$
\frac{\hat{f}\left(Y_{i}=1 \mid X_{i}=X\right)}{\hat{f}\left(Y_{i}=0 \mid X_{i}=X\right)}
$$

- Example, what are the odds of a woman being in the workforce, given that she has 8 years of education?

$$
\frac{\hat{f}\left(Y_{i}=1 \mid X_{i}=X\right)}{\hat{f}\left(Y_{i}=0 \mid X_{i}=X\right)}=\frac{0.59}{0.41}=1.44
$$

Analysing the data

- We wish to analyse the relationship between education and probability of workforce participation.
- The table of conditional sample frequencies showed a positive relationship between the two.
- We plot a graph of years of education vs. odds. We also plot the graph of years vs. log(odds).

- The plot of education vs. log(odds) is a more "linear" relationship than education vs. odds.

Econometric model for workforce participation

- The data is available in pairs of Y_{i}, X_{i} - for every woman, we observe her education and her workforce participation. Thus, every $\left(X_{i}, Y_{i}\right)$ comes from a joint density function:

$$
f\left(X_{i}, Y_{i}\right)=f\left(Y_{i} \mid X_{i}\right) f\left(X_{i}\right)
$$

- Assume that the $\left(X_{i}, Y_{i}\right)$ are independent across observations, i.
- $Y_{i} \mid X_{i}$ is Bernoulli distributed.
- The focus of our estimation is the "success" parameter of the Bernoulli.

Econometric model for workforce participation

- However, the success parameter for workforce participation Y is likely different for different levels of education, X.
- Model: $f(Y=1 \mid X)=1-f(Y=0 \mid X)=p(X)$.

The Bernoulli success parameter for workforce participation is a function of education X

- However, we need to restrict $p(X)$ to fall between values 0 and 1 , no matter what is the value of X.
- One distribution function that creates $0 \leq p(x) \leq 1$ for any value of X is the logitistic or the logit function.

Econometric model for workforce participation

- The logit function is defined as logit(p) as:

$$
\log \left(\frac{p}{1-p}\right)
$$

where $p /(1-p)$ is the odds of success.

- This function takes a shape similar to the CDF of the normal for different values of p.
- We model success "conditional on X ", which makes the logit form:

$$
\log \left(\frac{p(X)}{1-p(X)}\right)
$$

Here, $\frac{p(X)}{1-p(X)}$ is the odds of success given X.

Econometric model for workforce participation

- We want to model log(odds) as a linear function of X_{i} :

$$
\operatorname{logit}(p(x))=\beta_{0}+\beta_{1} X
$$

- This gives: $p(X)=f(Y=1 \mid X)=\frac{\exp \left(\beta_{0}+\beta_{1} X\right)}{\left(1+\exp \left(\beta_{0}+\beta_{1} X\right)\right)}$
- Thus, to know the expected conditional workforce participation of a woman given her years of education, we need to estimate β_{0} and β_{1}.

Interpreting the logit model for workforce participation

- $p(X)=f(Y=1 \mid X)$ is the likelihood of observing a success given X.

$$
\log \left(\frac{f(Y=1 \mid X)}{f(Y=0 \mid X)}\right)=\beta_{0}+\beta_{1} X
$$

- If we set $X_{i}=0$, then $\log (\operatorname{odds}(X=0))=\beta_{0}$.

Thus, the probability that a woman with no education participates in the workforce is β_{0} of the logit model.

- We can calculate that $\beta_{1}=\log \left(\frac{f\left(Y=1 \mid\left(X_{i}+1\right)\right)}{f\left(Y=0 \mid\left(X_{i}+1\right)\right)} / \frac{f\left(Y=1 \mid\left(X_{i}\right)\right.}{f\left(Y=0 \mid\left(X_{i}\right)\right.}\right)$
- β_{1} becomes the change in the log(odds) of participation in the workforce when the amount of education shifts from $X=0$ to a positive value of X.

Summary: Econometric model for workforce participation

- Independence of Y_{i}, X_{i} pairs across i.
- Conditional distribution of Y_{i} is Bernoulli with success parameter $p\left(X_{i}\right)$.
- Exogeniety of X_{i} : observed externally.
- We need to estimate β_{1}, β_{0}.
- We can use the MLE.

Setting up the MLE for the logit

L and $\log (\mathrm{L})$ for workforce participation

- The likelihood of observing Y_{i} is conditional and is as follows:

$$
f_{\theta}\left(y_{i}\right)=\left(\frac{\exp \beta_{0}+\beta_{1} X}{\left(1+\exp \left(\beta_{0}+\beta_{1} X\right)\right)}\right)^{Y_{i}}\left(\frac{1}{\left(1+\exp \left(\beta_{0}+\beta_{1} X\right)\right)}\right)^{1-Y_{i}}
$$

- We assume independence of the observed pairs $\left(Y_{i}, X_{i}\right)$. Therefore, the likelihood, $L(Y, X)$ is:

$$
\begin{aligned}
L & =\prod_{i=1}^{N}\left(\frac{\exp \left(\beta_{0}+\beta_{1} X_{i}\right)}{\left(1+\exp \left(\beta_{0}+\beta_{1} X_{i}\right)\right.}\right)^{Y_{i}}\left(\frac{1}{\left(1+\exp \left(\beta_{0}+\beta_{1} X_{i}\right)\right)}\right)^{1-Y} \\
& =\left[\prod_{i=1}^{N}\left(\frac{1}{\left(1+\exp \left(\beta_{0}+\beta_{1} X_{i}\right)\right)}\right)\right] \exp \left(\beta_{0} \sum_{i=1}^{N} Y_{i}+\beta_{1} \sum_{i=1}^{N} Y_{i} X_{i}\right. \\
I & =-\sum_{i=1}^{N} \log \left(1+\exp \left(\beta_{0}+\beta_{1} X_{i}\right)\right)+\beta_{0} \sum_{i=1}^{N} Y_{i}+\beta_{1} \sum_{i=1}^{N} Y_{i} X_{i}
\end{aligned}
$$

- There are two parameters to differentiate / with:

$$
\begin{aligned}
& \partial I\left(\beta_{0}, \beta_{1}\right) / \partial \beta_{0}=-\sum_{i=1}^{N} \frac{\exp \left(\beta_{0}+\beta_{1} X_{i}\right)}{\left(1+\exp \left(\beta_{0}+\beta_{1} X_{i}\right)\right.}+\sum_{i=1}^{N} Y_{i} \\
& \partial I\left(\beta_{0}, \beta_{1}\right) / \partial \beta_{1}=-\sum_{i=1}^{N} \frac{\exp \left(\beta_{0}+\beta_{1} X_{i}\right)}{\left(1+\exp \left(\beta_{0}+\beta_{1} X_{i}\right)\right.} X_{i}+\sum_{i=1}^{N} X_{i} Y_{i}
\end{aligned}
$$

- Solutions:

$$
\begin{aligned}
\sum_{i=1}^{N} \frac{\exp \left(\beta_{0}+\beta_{1} X_{i}\right)}{\left(1+\exp \left(\beta_{0}+\beta_{1} X_{i}\right)\right.} & =\sum_{i=1}^{N} Y_{i} \\
\sum_{i=1}^{N} \frac{\exp \left(\beta_{0}+\beta_{1} X_{i}\right)}{\left(1+\exp \left(\beta_{0}+\beta_{1} X_{i}\right)\right.} X_{i} & =\sum_{i=1}^{N} X_{i} Y_{i}
\end{aligned}
$$

- There is no analytical close-form solution to find β_{0}, β_{1}. We use numerical methods instead.

