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Goals

The link between workforce participation and education
Analysing a two-variable data-set: bivariate distributions
Conditional probability
Expected mean from conditional probabilities
The logistic function
MLE for the logistic problem
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The problem of workforce participation
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Economic problem: A model for workforce
participation

Variable, Yi : the participation of women in the workforce.
Yi = 0 if the woman does not participate in the workforce.
Yi = 1 if the woman is a part of the workforce.
Yi is binary, which means a Bernoulli distribution
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Economic problem: Dataset on eduction and
workforce participation

For every observation i , Yi is observed along with Xi =
education of the woman.
This is measured by years of schooling.
Xi is an integer, taking values from “0” – no years of school,
to “12” – High School, to “13” and beyond – “College”.
The data on education is grouped into 7 categories and
has the following frequency distribution:

Yi /Xi 0-7 8 9–11 12 13–15 16–19 ≥ 20
0 256 180 579 1228 463 219 7
1 143 127 560 1858 858 665 41

There are a total of 7184 observations.
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Economic problem: predicting workforce participation

Question: Is there a relationship between a woman’s
workforce participation and her eduction (Yi and Xi )?
Question: If we know how many years of education a
woman has had (Xi ), what is her expected workforce
participation Ê(Yi)?
We would like to model expected workforce participation,
conditional on her education.
We need statistical models of conditional expectations,
Ê(Y |X ).
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Statistical underpinnings
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Creating conditional probabilities

E(Y |X ) =
∑I

i=1 Yi f (Y |X ) where f (Y |X ) is called the
conditional probability of Y given X .
In order to calculate conditional expectations, we need to
know conditional probabilities.
In order to estimate conditional probabilities, we need to
understand conditional frequency distribution/densities.
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Creating conditional probabilities for the dataset

We change from number of observations to frequencies:
Yi /Xi 0-7 8 9–11 12 13–15 16–19 ≥ 20
0 0.04 0.03 0.08 0.17 0.06 0.03 0.00
1 0.02 0.02 0.08 0.26 0.12 0.09 0.01

The sum of all the elements add up to 1. These are the
joint frequencies or joint probabilities of observing
workforce participation and education.
We get the distribution of workforce participation (or
education) by summing the row elements (or column
elements) as:

Yi /Xi 0-7 8 9–11 12 13–15 16–19 ≥ 20 f̂ (Y )

0 0.04 0.03 0.08 0.17 0.06 0.03 0.00 0.41
1 0.02 0.02 0.08 0.26 0.12 0.09 0.01 0.59

f̂ (X ) 0.06 0.04 0.16 0.43 0.18 0.12 0.01 1

The last row is the marginal frequency distribution of X .
The last column is the marginal of Y .
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Conditional probabilities/frequencies

Conditional information: making a statement about Y given
we know X .
Example, what is the frequency of workforce participation
of women who have 8 years of education?
This is written as f (X = 8).
The sample frequency is f̂ (X = 8).
We use the relationship:

f (Y |X ) =
f (Y ,X )

f (X )
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Sample conditional probabilities

The data is given as:

Yi /Xi 0-7 8 9–11 12 13–15 16–19 ≥ 20 f̂ (Y )

0 0.04 0.03 0.08 0.17 0.06 0.03 0.00 0.41
1 0.02 0.02 0.08 0.26 0.12 0.09 0.01 0.59

f̂ (X ) 0.06 0.04 0.16 0.43 0.18 0.12 0.01 1

The data set gives

f̂ (y = 0, x = 8) = 0.025
f̂ (y = 1, x = 8) = 0.017

f̂ (x = 8) = 0.042

Then, the sample conditional frequency distribution of
workforce participation of women with 8 years of education
is:

Y 0 1
f̂ (Y |X = 8) 0.59 0.41

This is a Bernoulli with a “success” rate of 0.41%.
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Sample conditional probabilities for all X

We can calculate the conditional frequency distribution for
each value of X as:

f̂ (Y |X )/Xi 0-7 8 9–11 12 13–15 16–19 ≥ 20
f̂ (Y = 0|X ) 0.64 0.59 0.51 0.40 0.35 0.25 0.15
f̂ (Y = 1|X ) 0.36 0.41 0.49 0.60 0.65 0.75 0.85

Conditional frequencies add up to 1 for a given X .
In the above table, we notice that as years of education
increase, the probability of workforce participation
increases also.
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Calculating the expected value

As always, the focus of our analysis/estimation is the
expected value of workforce participation.
Generally, expectation Ê(Y ) is:

Ê(Y ) =
K∑

k=1

Yk f̂ (Yk )

Here, the problem is different, because we observe how
many years of education the person has had. We want to
calculate the expectation of Y conditional on observed X .
This is:

Ê(Y |X = xj) =
K∑

k=1

Yk f̂ (Yk |xj)
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Calculating the expected value

The unconditional expectation of Y then becomes:

Ê(Y ) =
J∑

j=1

Ê(Y |X = xj)f̂ (xj)

=
J∑

j=1

(
K∑

k=1

Yk f̂ (Yk |xj)

)
f̂ (xj)

This is the Law of Iterated Expectations.
Given the sample conditional expectation of Y for every
value of X , and
the marginal frequency of X ,
we can calculate the unconditional expectation of Y .
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Recap on independence

Conditional density of Y is

f (Y |X ) =
f (X ,Y )

f (X )

Indepence:
f (X ,Y ) = f (X )f (Y )

Joint is a product of the marginals.
This implies that under independence, the conditional
density of Y is the same as the marginal density of Y .

f (Y |X ) =
f (X ,Y )

f (X )
=

f (X ) ∗ f (Y )

f (X )
= f (Y )

Under independence, the conditional expectation of Y is
the same as the unconditional expectation of Y .

E(Y |X ) = E(Y )
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The logistic function for a binary dependent
variable
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Defining the odds

Odds are a term that can be defined for a binary variable
as follows:

f̂ (Yi = 1)

f̂ (Yi = 0)

More generally, we say it is the ratio of conditional
frequencies:

f̂ (Yi = 1|Xi = X )

f̂ (Yi = 0|Xi = X )

Example, what are the odds of a woman being in the
workforce, given that she has 8 years of education?

f̂ (Yi = 1|Xi = X )

f̂ (Yi = 0|Xi = X )
=

0.59
0.41

= 1.44
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Analysing the data

We wish to analyse the relationship between education
and probability of workforce participation.
The table of conditional sample frequencies showed a
positive relationship between the two.
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Plotting the data

We plot a graph of years of education vs. odds. We also
plot the graph of years vs. log(odds).
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The plot of education vs. log(odds) is a more “linear”
relationship than education vs. odds.
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Econometric model for workforce participation

The data is available in pairs of Yi ,Xi – for every woman,
we observe her education and her workforce participation.
Thus, every (Xi ,Yi ) comes from a joint density function:

f (Xi ,Yi) = f (Yi |Xi)f (Xi)

Assume that the (Xi ,Yi) are independent across
observations, i .
Yi |Xi is Bernoulli distributed.
The focus of our estimation is the “success” parameter of
the Bernoulli.
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Econometric model for workforce participation

However, the success parameter for workforce participation
Y is likely different for different levels of education, X .
Model: f (Y = 1|X ) = 1− f (Y = 0|X ) = p(X ).
The Bernoulli success parameter for workforce
participation is a function of education X
However, we need to restrict p(X ) to fall between values 0
and 1, no matter what is the value of X .
One distribution function that creates 0 ≤ p(x) ≤ 1 for any
value of X is the logitistic or the logit function.
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Econometric model for workforce participation

The logit function is defined as logit(p) as:

log
(

p
1− p

)
where p/(1− p) is the odds of success.
This function takes a shape similar to the CDF of the
normal for different values of p.
We model success “conditional on X ”, which makes the
logit form:

log
(

p(X )

1− p(X )

)
Here, p(X)

1−p(X) is the odds of success given X .
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Econometric model for workforce participation

We want to model log(odds) as a linear function of Xi :

logit(p(x)) = β0 + β1X

This gives: p(X ) = f (Y = 1|X ) = exp(β0+β1X)
(1+exp(β0+β1X))

Thus, to know the expected conditional workforce
participation of a woman given her years of education, we
need to estimate β0 and β1.
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Interpreting the logit model for workforce participation

p(X ) = f (Y = 1|X ) is the likelihood of observing a success
given X .

log
(

f (Y = 1|X )

f (Y = 0|X )

)
= β0 + β1X

If we set Xi = 0, then log(odds(X = 0)) = β0.
Thus, the probability that a woman with no education
participates in the workforce is β0 of the logit model.

We can calculate that β1 = log
(

f (Y=1|(Xi+1))
f (Y=0|(Xi+1))/

f (Y=1|(Xi )
f (Y=0|(Xi )

)
β1 becomes the change in the log(odds) of participation in
the workforce when the amount of education shifts from
X = 0 to a positive value of X .
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Summary: Econometric model for workforce
participation

Independence of Yi ,Xi pairs across i .
Conditional distribution of Yi is Bernoulli with success
parameter p(Xi).
Exogeniety of Xi : observed externally.
We need to estimate β1, β0.
We can use the MLE.
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Setting up the MLE for the logit
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L and log(L) for workforce participation

The likelihood of observing Yi is conditional and is as
follows:

fθ(yi) =

(
expβ0 + β1X

(1 + exp (β0 + β1X ))

)Yi
(

1
(1 + exp (β0 + β1X ))

)1−Yi

We assume independence of the observed pairs (Yi ,Xi).
Therefore, the likelihood, L(Y ,X ) is:

L =
N∏

i=1

(
exp (β0 + β1Xi)

(1 + exp (β0 + β1Xi)

)Yi
(

1
(1 + exp (β0 + β1Xi))

)1−Yi

=

[
N∏

i=1

(
1

(1 + exp (β0 + β1Xi))

)]
exp (β0

N∑
i=1

Yi + β1

N∑
i=1

YiXi)

l = −
N∑

i=1

log(1 + exp (β0 + β1Xi)) + β0

N∑
i=1

Yi + β1

N∑
i=1

YiXi
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First derivatives of l

There are two parameters to differentiate l with:

∂l(β0, β1)/∂β0 = −
N∑

i=1

exp (β0 + β1Xi)

(1 + exp (β0 + β1Xi)
+

N∑
i=1

Yi

∂l(β0, β1)/∂β1 = −
N∑

i=1

exp (β0 + β1Xi)

(1 + exp (β0 + β1Xi)
Xi +

N∑
i=1

XiYi

Solutions:
N∑

i=1

exp (β0 + β1Xi)

(1 + exp (β0 + β1Xi)
=

N∑
i=1

Yi

N∑
i=1

exp (β0 + β1Xi)

(1 + exp (β0 + β1Xi)
Xi =

N∑
i=1

XiYi

There is no analytical close-form solution to find β0, β1. We
use numerical methods instead.
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