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Recap

Setting up the model for the logit problem (how probable is
it that a woman participates in the workforce, given her
education.)
Conditional expectations
The logistic transformation
MLE for the problem: Bernoulli + logistic transformation
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Logit model results for being participating in the
workforce

Likelihood function is:

fθ(yi) =

(
expβ0 + β1X

(1 + exp (β0 + β1X ))

)Yi
(

1
(1 + exp (β0 + β1X ))

)1−Yi

Fitting the data to the model, we find that:

β0 = −1.4, β1 = 0.15

We find that the value of the logl at β̂0, β̂1 is -4702.71.
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Interpreting model results

The log odds ratio with no education is β0 = −1.4.
We can extract the probability of workforce participation
given no education from this:

p̂(Y = 1|X = 0)

p̂(Y = 0|X = 0)
= e−1.4 = 0.25

p̂(Y = 1|X = 1)

p̂(Y = 0|X = 1)
= e−1.4+0.15 = 0.29

p̂(Y = 1|X = 10)

p̂(Y = 0|X = 10)
= e−1.4+1.5 = 1.1

p̂(Y = 1|X = 20)

p̂(Y = 0|X = 20)
= e−1.4+3.0 = 5.0
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Inference about chosen model parameter
values
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Inference about H0

A null of interest: education does not influence workforce
participation.

H0 : β1 = 0

How do we test this is not the truth, and that β1 = 0.15 is?
Use the LR test.
First step: estimate the “restricted model” where β1 is set
forcibly to 0.
The restricted model has the following values:

β0 = 0.37, l = −4857.61

Second step: LR test form: −2 log (LR − LU).
Benchmark: χ2(1). At 95% confidence, χ2(1) = 3.84.
Inference: lR = −4857.61, lU = −4702.71

LR = −2 ∗ (−4857.61 + 4701.71) = 312
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Interpreting inference results

312 >> 3.84.
So, at a 95% confidence, we reject the null that β1 = 0.
Syntax: if the LR test was less than 3.84, the language
would be that “we do not reject the null.”
By choosing a level of 5%, we accept that in 5% of
hypothetical samples from the population, we reject a true
hypothesis like β1 = 0 by chance.
With LR = 312, we do not find any support for the null
β = 0.
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Economic interpretation: Causation vs. correlation

The empirical analysis establishes correlation between Y
and X .
However, we want to know whether education causes
workforce participation particularly since economic policy
can be founded on such analysis.
For instance: if all the women were given one more year of
education, would it increase the odds that they participate
in the workforce?
Ans: Not necessarily. Other factors could drive the choice
of education – like a preference for studying, or a signal of
ability.
Without taking all these factors into account, we can’t
make the link to causality.
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Tests for different forms of the alternative, Ha

Example: H0 : β1 = 0 means no impact of education on
workforce participation.
Default alternative: H1 : β1 6= 0.
Another alternative: H1 : β1 > 0.
How do we test the null under this alternative?
Use the one-tailed test, rather than the usual “two-tailed”
test.
Two tailed tests have the critical region located
symmetrically on both sides of the test-statistic distribution
center.
One tailed test have the critical region pooled all on one
side of the distribution.
These are also called “signed” tests. It refers to the nature
of the alternative hypothesis.
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Examples of “critical values” under two-tailed vs.
one-tailed tests

If the test statistic is gaussian distributed, critical values for
different confidence levels are:

1 95% confidence, critical region 5%
Two tailed test critical value: x = 1.96
One tailed test critical value: x = 1.645

2 99% confidence, critical region 1%
Two tailed test critical value: x = 2.58
One tailed test critical value: x = 2.33
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Setting up the signed LR test

The LR-statistic is χ2(1).
A new test statistic ω is defined as follows:

ω = sign(β̂1)
√

LR

where

sign(x) =
+1 if x ≥ 0
−1 if x < 0

Then, ω ∼ N(0,1) approximately.
If theory says that β1 > 0, then the critical region is chosen
as (ω > critical value).
If theorhy says that β1 < 0, then the critical region is
chosen as (ω < −critical value).
Example, for a test at 95% confidence wrt a gaussian
distribution, and critical value is 0.05 one-tailed, then

ω > 1.65
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Testing Ha : β1 > 0 for education in workforce
participation

lR = −4857.61, lU = −4702.71

LR = −2 ∗ (−4857.61 + 4701.71) = 312

ω = +
√

312 = 17.66
The 5% one-tailed test critical value for the gaussian is
1.645
ω = 17.66 > 1.645.
Inference? H0 is rejected even against a different
alternative.
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Case of conflicting inference between one-tailed and
two-tailed tests

In the earlier example, the test statistics were very far away
from the critical values.
It could be that the test-statistics are close to the critical
value – in that case, the one-tailed and two-tailed test
could give conflicting inference.
Example, say the LR = 3.25 (close to 3.84). Since
ω =
√

LR = 1.8 (close to 1.65).
But LR “fails to reject” H0 and ω rejects H0.
The one-tailed test is said to be more powerful than the
two-tailed test.
In such situations, rather than chose one result vs. the
other, the objective is to
strengthen the dataset,
and thus, strengthen the test and inference.
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Inference about the chosen model itself
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Inference about the model

Do we have the right model? Or is our model
“misspecified”?
For this, we need an alternative model itself.
The model includes: independence, type of distribution
used for Y , whether it is identical for each observation, the
form of variation across observation.
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Alternative model for workforce participation

Example: f (Y = 1|X ) = π(X )
It is not Bernoulli with the probability parameter as a
function of (β0, β1) but (π0, π1, π2, π3, . . . , πJ).
Where J is the number of categories of education used.
With 20 years of education, J = 20.
Then, the alternative for f (Yi) of effect of education on
workforce participation is

logit(p(Yi)) =
J∑

j=0

πj I(Xi=j)

Here, I(Xi=j) is an indicator function, with

I(Xi=j) = 1, if Xi = j , and = 0, if Xi 6= j
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Alternative model for workforce participation

Once the alternative is identified and formulated, we check
whether we can calculate the log likelihood function for this
model.
If that can be done, we can apply the LR test framework to
test the null of our original model against the alternative.
Applying the alternative to the problem:

l(Y1,Y2,...,YN |X1,X2,...,XN)(π0, π1, . . . , π20) = −4688.92

Now we can do inference.
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Inference approach for model misspecification

Inference step 1: identify the test.
LR test.
Inference step 2: to use the LR test, identify the “restricted”
model and the “unrestricted model”.
Hπ0,π1,...,π20 is the unrestricted model
Hβ0,β1 is the restricted model
Key point: the focus of inference is to determine whether
the “restricted model” is a significantly worse description of
the data than the “unrestricted model”.
Inference step 3: calculate the statistic.
LH0 = −4702.7,LHa = −4688.92

LR = −2(−4702.7 + 4688.92) = 27.59

Inference step 4: compare with the benchmark distribution.
χ2(n) – what is n here?
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Benchmark for model misspecification tests

We know that variables that are sum of normal variate
squared are generally distributed χ2(n).
The general definition is:
Suppose Z ∼ N(0,1). Then Z 2 ∼ χ2(1).
If Z1, . . . ,Zm are independently N(0,1), and
Wm = Z 2

1 + . . .+ Z 2
m, then Wm ∼ χ2(m).

In the misspecification LR-test, the degrees of freedom for
the benchmark distribution are found as:
the difference between the number of parameters of the H0
model vs. Ha model.
In our case, Ha has 21 parameters. H0 has 2 parameters.
Thus, the degrees of freedom for the relevant χ2

distribution is n = 19.
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Inference about the validity of the original model

At 95%, χ2(19) = 30.1. At 99%, χ2(19) = 36.2
The LR test is 27.59 < 30.1,36.2
The restricted model Hβ0,β1 cannot be rejected against the
unrestricted model Hπ0,π1,...,π20

Ie, the model where the probability of workforce
participation, f̂ (Y = 1|X ) is
a free-standing function of the years of education
does not predict significantly better than
as an output of a linear function (β0 + β1× years of
education)
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Model misspecification tests – goodness of fit tests

Principle is to stratify observations by some common factor
as the alternative model.
For each strata, the sample frequency is compared against
the model predicted mean.
Statistical literature refers to this as “testing the goodness
of fit of the model”.
Econometric literature refers to this as “testing the validity
of the model”.
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