Inference for a logit model

Susan Thomas IGIDR, Bombay

September 17, 2008

Susan Thomas Inference for a logit model

ヘロト ヘアト ヘビト ヘビト

2

- Setting up the model for the logit problem (how probable is it that a woman participates in the workforce, given her education.)
- Conditional expectations
- The logistic transformation
- MLE for the problem: Bernoulli + logistic transformation

・ 同 ト ・ ヨ ト ・ ヨ ト …

ъ

Logit model results for being participating in the workforce

• Likelihood function is:

$$f_{\theta}(y_i) = \left(\frac{\exp\beta_0 + \beta_1 X}{(1 + \exp(\beta_0 + \beta_1 X))}\right)^{Y_i} \left(\frac{1}{(1 + \exp(\beta_0 + \beta_1 X))}\right)^{1 - Y_i}$$

• Fitting the data to the model, we find that:

$$\beta_0 = -1.4, \beta_1 = 0.15$$

• We find that the value of the logl at $\hat{\beta}_0, \hat{\beta}_1$ is -4702.71.

(過) (ヨ) (ヨ)

Interpreting model results

- The log odds ratio with no education is $\beta_0 = -1.4$.
- We can extract the probability of workforce participation given no education from this:

$$\frac{\hat{p}(Y=1|X=0)}{\hat{p}(Y=0|X=0)} = e^{-1.4} = 0.25$$
$$\frac{\hat{p}(Y=1|X=1)}{\hat{p}(Y=0|X=1)} = e^{-1.4+0.15} = 0.29$$
$$\frac{\hat{p}(Y=1|X=10)}{\hat{p}(Y=0|X=10)} = e^{-1.4+1.5} = 1.1$$
$$\frac{\hat{p}(Y=1|X=20)}{\hat{p}(Y=0|X=20)} = e^{-1.4+3.0} = 5.0$$

< 回 > < 回 > < 回 > -

ъ

Inference about chosen model parameter values

∃ 900

通 とくほ とくほ とう

Inference about H_0

 A null of interest: education does not influence workforce participation.

$$H_0:\beta_1=0$$

- How do we test this is not the truth, and that $\beta_1 = 0.15$ is? Use the LR test.
- First step: estimate the "restricted model" where β₁ is set forcibly to 0.
- The restricted model has the following values:

$$\beta_0 = 0.37, I = -4857.61$$

- Second step: LR test form: $-2 \log (L_R L_U)$. Benchmark: $\chi^2(1)$. At 95% confidence, $\chi^2(1) = 3.84$.
- Inference: *I_R* = −4857.61, *I_U* = −4702.71

$$LR = -2 * (-4857.61 + 4701.71) = 312$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• 312 >> 3.84.

So, at a 95% confidence, we reject the null that $\beta_1 = 0$.

- Syntax: if the LR test was less than 3.84, the language would be that "we do not reject the null."
- By choosing a level of 5%, we accept that in 5% of hypothetical samples from the population, we reject a true hypothesis like β₁ = 0 by chance.
- With LR = 312, we do not find any support for the null $\beta = 0$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

- The empirical analysis establishes correlation between *Y* and *X*.
- However, we want to know whether education **causes** workforce participation particularly since economic policy can be founded on such analysis.
- For instance: if all the women were given one more year of education, would it increase the odds that they participate in the workforce?
- Ans: Not necessarily. Other factors could drive the choice of education – like a preference for studying, or a signal of ability.

Without taking all these factors into account, we can't make the link to causality.

(日本) (日本) (日本)

Tests for different forms of the alternative, H_a

- Example: H_0 : $\beta_1 = 0$ means no impact of education on workforce participation.
- Default alternative: H₁ : β₁ ≠ 0. Another alternative: H₁ : β₁ > 0.
- How do we test the null under this alternative? Use the one-tailed test, rather than the usual "two-tailed" test.
- Two tailed tests have the critical region located symmetrically on both sides of the test-statistic distribution center.

One tailed test have the critical region pooled all on one side of the distribution.

• These are also called "signed" tests. It refers to the nature of the alternative hypothesis.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Examples of "critical values" under two-tailed vs. one-tailed tests

- If the test statistic is gaussian distributed, critical values for different confidence levels are:
 - 95% confidence, critical region 5%
 Two tailed test critical value: x = 1.96
 One tailed test critical value: x = 1.645
 - 99% confidence, critical region 1% Two tailed test critical value: x = 2.58One tailed test critical value: x = 2.33

Setting up the signed LR test

• The LR-statistic is $\chi^2(1)$.

• A new test statistic ω is defined as follows:

$$\omega = \operatorname{sign}(\hat{\beta}_1)\sqrt{\mathrm{LR}}$$

where

$$\operatorname{sign}(x) = \begin{array}{c} +1 & \text{if } x \ge 0 \\ -1 & \text{if } x < 0 \end{array}$$

- Then, $\omega \sim N(0, 1)$ approximately.
- If theory says that β₁ > 0, then the critical region is chosen as (ω > critical value).
 If theorhy says that β₁ < 0, then the critical region is chosen as (ω < -critical value).
- Example, for a test at 95% confidence wrt a gaussian distribution, and critical value is 0.05 one-tailed, then

$$\omega > 1.65$$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Testing H_a : $\beta_1 > 0$ for education in workforce participation

•
$$I_R = -4857.61, I_U = -4702.71$$

LR = -2 * (-4857.61 + 4701.71) = 312

•
$$\omega = +\sqrt{312} = 17.66$$

 The 5% one-tailed test critical value for the gaussian is 1.645

$$\omega = 17.66 > 1.645.$$

 Inference? H₀ is rejected even against a different alternative.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ……

Case of conflicting inference between one-tailed and two-tailed tests

- In the earlier example, the test statistics were very far away from the critical values.
- It could be that the test-statistics are close to the critical value – in that case, the one-tailed and two-tailed test could give conflicting inference.
- Example, say the LR = 3.25 (close to 3.84). Since $\omega = \sqrt{LR} = 1.8$ (close to 1.65). But LR "fails to reject" H_0 and ω rejects H_0 .
- The one-tailed test is said to be more powerful than the two-tailed test.
- In such situations, rather than chose one result vs. the other, the objective is to strengthen the dataset, and thus, strengthen the test and inference.

Inference about the chosen model itself

- Do we have the right model? Or is our model "misspecified"?
 For this, we need an alternative model itself.
- The model includes: independence, type of distribution used for *Y*, whether it is identical for each observation, the form of variation across observation.

伺 とくき とくき とう

Alternative model for workforce participation

- Example: f(Y = 1|X) = π(X)
 It is not Bernoulli with the probability parameter as a function of (β₀, β₁) but (π₀, π₁, π₂, π₃, ..., π_J). Where J is the number of categories of education used. With 20 years of education, J = 20.
- Then, the alternative for *f*(*Y_i*) of effect of education on workforce participation is

$$\operatorname{logit}(p(Y_i)) = \sum_{j=0}^{J} \pi_j I_{(X_i=j)}$$

• Here, $I_{(X_i=j)}$ is an indicator function, with

$$I_{(X_i=j)} = 1$$
, if $X_i = j$, and $= 0$, if $X_i \neq j$

▲圖 ▶ ▲ 理 ▶ ▲ 理 ▶ …

Alternative model for workforce participation

- Once the alternative is identified and formulated, we check whether we can calculate the log likelihood function for this model.
- If that can be done, we can apply the LR test framework to test the null of our original model against the alternative.
- Applying the alternative to the problem:

$$I_{(Y_1,Y_2,\ldots,Y_N|X_1,X_2,\ldots,X_N)}(\pi_0,\pi_1,\ldots,\pi_{20}) = -4688.92$$

Now we can do inference.

- Inference step 1: identify the test. LR test.
- Inference step 2: to use the LR test, identify the "restricted" model and the "unrestricted model".

 $H_{\pi_0,\pi_1,\ldots,\pi_{20}}$ is the *unrestricted model*

 H_{β_0,β_1} is the *restricted model*

Key point: the focus of inference is to determine whether the "restricted model" is a *significantly worse* description of the data than the "unrestricted model".

• Inference step 3: calculate the statistic.

$$L_{H_0} = -4702.7, L_{H_a} = -4688.92$$

$$LR = -2(-4702.7 + 4688.92) = 27.59$$

• Inference step 4: compare with the benchmark distribution. $\chi^2(n)$ – what is *n* here?

ヘロン 人間 とくほとくほとう

Benchmark for model misspecification tests

- We know that variables that are sum of normal variate squared are generally distributed χ²(n).
- The general definition is: Suppose $Z \sim N(0, 1)$. Then $Z^2 \sim \chi^2(1)$. If Z_1, \ldots, Z_m are independently N(0, 1), and $W_m = Z_1^2 + \ldots + Z_m^2$, then $W_m \sim \chi^2(m)$.
- In the misspecification LR-test, the degrees of freedom for the benchmark distribution are found as: the difference between the number of parameters of the H₀ model vs. H_a model.
- In our case, H_a has 21 parameters. H_0 has 2 parameters. Thus, the degrees of freedom for the relevant χ^2 distribution is n = 19.

ヘロン 人間 とくほ とくほとう

Inference about the validity of the original model

- At 95%, $\chi^2(19) = 30.1$. At 99%, $\chi^2(19) = 36.2$
- The LR test is 27.59 < 30.1, 36.2
- The restricted model H_{β_0,β_1} cannot be rejected against the unrestricted model $H_{\pi_0,\pi_1,...,\pi_{20}}$
- Ie, the model where the probability of workforce participation, $\hat{f}(Y = 1|X)$ is a free-standing function of the years of education *does not predict significantly better* than as an output of a linear function ($\beta_0 + \beta_1 \times$ years of education)

イロト 不得 とくほ とくほ とうほ

- Principle is to stratify observations by some common factor as the alternative model.
- For each strata, the sample frequency is compared against the model predicted mean.
- Statistical literature refers to this as "testing the goodness of fit of the model".
- Econometric literature refers to this as "testing the validity of the model".

< 回 > < 回 > < 回 > -