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Recap

MLE for single variable data, one-parameter distribution
(birth data, Bernoulli)
MLE for single variable data, two-parameter distribution
(wage data, log-normal/normal)
MLE for two-variable data, one-parameter conditional
distribution, explained by multiple parameters
(workforce participation-education, Bernoulli with logit
transformation)

Susan Thomas The two-variable gaussian distribution model



The two-variable regression model

Variable to model: wages. Data: weekly wages, in USD.
Additional information: education, in number of years.
What we want to estimate: the expected wage –
conditional on education.
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Data description

As with workforce participation, we check whether the
conditional behaviour of log(wages) y is different from the
unconditional behaviour.
Unlike workforce participation, the comparison is done on
the conditional density distribution of y .
Observed: the median of y conditional on education
increases with length of schooling.
Conditional variance varies less with length of schooling:
the range of values of y conditional on schooling does not
change.
Suggested model : y with varying conditional expectation
but with unconditional variance.
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The model

Transform wages W to log(wages) w – lognormal –>
normal
Model for w :

1 (X , y) pairs are independent
2 Variable X is exogenous
3 Conditional normality -

1 E(y |X = Xi) = (β0 + beta1Xi),
2 Variance is unconditional, σ2, not σ2

i = f (Xi).

Model: E(y |X = Xi) ∼ N((β0 + β1Xi), σ
2)

Model parameter space: β0, β1, σ
2

yi = β0 + β1Xi + εi
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Model parameter interpretation

β0 is E(y) with no schooling.
β1 is the marginal increase in E(y) with one more year of
schooing.
Unlike the logit model, where β1 was the log(odds) ration –
marginal increase in the log(odds) of workforce
participation.
What is the unconditional E(y)?

E(y |Xj) = β0 + β1Xj

E(y) =
J∑

j=0

(β0 + β1Xj)f (Xj)

= β0 × 1 + β1

J∑
j=0

Xj f (Xj)

= β0 + β1E(X )

Syntax: β0, β1 are called “regression coefficients”.
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Setting up the log(likelihood) for estimation

Since y is conditionally gaussian distributed:

fβ0,β1,σ2(y1, ., yN |X1, .,XN) =
1√

(2πσ2)
e−

1
2

(yi−E(yi ))2

σ2

=
1√

(2πσ2)
e−

1
2

(yi−β0−β1Xi )2

σ2

Using this, we set up the L and the log(L), l as:

L =
∏

i

1√
(2πσ2)

e−
1
2

(yi−β0−β1Xi )2

σ2

=
1√

(2πσ2)
e−

1
2

PN
i=1

(yi−β0−β1Xi )2

σ2

l = − N√
(2πσ2)

− 1
2

N∑
i=1

(yi − β0 − β1Xi)
2

σ2
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Maximising L, minimising l

The optimisation now involves three parameters: β0, β1, σ
2.

This gives three equations:

∂

∂β0
l = −2

N∑
i=1

(yi − β0 − β1Xi)

∂

∂β1
l = −2

N∑
i=1

(yi − β0 − β1Xi)Xi

∂

∂σ2 l = − N
2σ2 +

1
2σ4

N∑
i=1

(yi − β0 − β1Xi)
2

Set these to zero, and we get three equations to solve for
(β0, β1, σ

2).
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Solution for β0, β1

We see that the equation for σ2 involves both β0, β1.
Equations for β0, β1 do not have σ2, so we solve for them
first.
Solution for β0:

∂

∂β0
l = −2

N∑
i=1

(yi − β0 − β1Xi) = 0

N∑
i=1

(yi)− Nβ̂0 − β̂1

N∑
i=1

(Xi) = 0

β̂0 = ȳ − β̂1X̄

Susan Thomas The two-variable gaussian distribution model



Solution for β1

Solve for the β1 using
∂
∂β1

l = −2
∑N

i=1(yi − β0 − β1Xi)Xi = 0

β̂1

N∑
i=1

X 2
i =

N∑
i=1

(yiXi − X̄ (ȳ − β̂1X̄ ))

β̂1(
N∑

i=1

X 2
i − X̄ 2) =

N∑
i=1

(yiXi − X̄ ȳ)

β̂1 =

∑N
i=1 yiXi − NX̄ ȳ∑N

i=1 X 2
i − X̄ 2

=
ˆcov(Xy)

ŝ2
X

And, β̂0 = ȳ − X̄
ˆcov(Xy)

ŝ2
X
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Sample correlation between y ,X , r(X ,Y )

We see MLE for the regression coefficients is a function of
the sample correlation between the dependent variable y
and the independent variable X .

Sample correlation, r(x,y) =
PN

i=1(Xi−X̄)(Yi−Ȳ )√PN
i=1(Xi−X̄)2

PN
i=1(Yi−Ȳ )2

This has properties:
1 It is free of the unit of X ,Y .

Linear transformations of X ,Y does not affect the value of
r(X ,Y ). Eg., r(X ,Y ) = r(aX ,b+cY )

Non-linear transformations of X ,Y do affect the value of
r(X ,Y ) Eg., r(X ,Y ) 6= r(log X ,Y )

2 r(X ,Y ) = 0 if the sample covariance is zero.
3 r(X ,Y ) takes values between -1 and +1.

If Yi = a + bXi , then r(X ,Y ) = 1
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Population correlation between y ,X , ρ(X ,Y )

ρ(X ,Y ) = E((X−µX )(Y−µY ))√
E(X−µX )2E(Y−µY )2

It has the same properties as r(X ,Y ):
invariance across linear transformations,
ρ(X ,Y ) = 0 if X ,Y are uncorrelated,
ρ2

(X ,Y ) ≤ 1 unless Y = a + bX in which case it ρ(X ,Y ) = 1.
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r(X ,Y ) and MLE β̂1

The model clearly specifies the flow of the relationship
between X ,Y .
However, consider the following pair of equations:

Yi = β0 + β1Xi + εi

Xi = γ0 + γ1Yi + ηi

We know rX ,Y = rY ,X

Then, r2
(X ,Y ) = β̂1γ̂1.

When σx = σy , then β̂1 = rX ,Y = rY ,X = γ̂1.
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Example with data

∑N
i=1 Xi = 48943∑N
i=1 yi = 19460.1∑N
i=1 N = 3877∑N
i=1 X 2

i = 645663∑N
i=1 y2

i = 99876∑N
i=1 yiXi = 247775

What is β0, β1, σ
2?
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Example with data

β̂0 = 4.06
β̂1 = 0.076
σ̂2 = 0.526
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r(X ,Y ) and MLE σ̂2

To understand the relationship between r(X ,Y ) and MLE σ̂2,
we need to understand the relationship between X and Y
better.
Consider a new form of the X ,Y relationship:

Yi = β0X0,i + β1X1,i + εi

where X0,i = 1 and X1,i is the following regression equation

Xi = γ11 + ωi = γ1X0,i + ωi
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Interpreting equation: Xi = γ11 + εi

Xi is a continuous rv that can take any value.
εi is gaussian distributed.
The MLE γ̂1 will be:

γ̂1 =
1
N

N∑
i=1

Xi = X̄

Thus, this regression equationt gives you the value of the
sample mean of the dependent variable as the regression
coefficient, γ1.
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Reparameterised model Yi |Xi

We can then rewrite Yi = β0X0,i + β1X1,i + εi as

Yi = β0X0,i + β1(X̄X0,i + (Xi − X̄ )) + εi

= (β0 + β1X̄ )X0,i + β1(Xi − X̄ ) + εi

= δ0X0,i + δ1(Xi − X̄ ) + εi

This is a useful reparameterisation because X0,i , (Xi − X̄ )
are orthogonal to each other (by definition).
Two outcomes:

N∑
i=0

(Xi − X̄ ) = 0

N∑
i=0

X0,i(Xi − X̄ ) = 0
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MLE coefficients for the reparameterised model Yi |Xi

Differentiating l wrt δ0 gives:

−2
N∑

i=1

(Yi − δ0 − δ1(Xi − X̄ )) = 0

Solution: δ̂0 = Ȳ
Differentiating l wrt δ1 gives:

−2
N∑

i=1

(Yi − δ0 − δ1(Xi − X̄ ))(Xi − X̄ ) = 0

Solution: δ̂1 =
PN

i=1 Yi (Xi−X̄)PN
i=1(Xi−X̄)2

δ̂1 = β̂1!

MLE estimates are the same across rescaling of data.
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Link 1 between r(X ,Y ) and MLE σ̂2

We found out that:

Ŷi = β0 + β1Xi = δ0 + δ1(Xi − X̄ )

Or β1 =
PN

i=1 Yi (Xi−X̄)PN
i=1(Xi−X̄)2

Using the above equality of model and reparameterised
model, we calculate that:

σ̂2 == (1− r2)
N∑

i=1

(Yi − Ȳ )2
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Link 2 between r(X ,Y ) and MLE σ̂2

The one-variable model is a restriction on the model
Yi = β0 + β1Xi where the restriction is β1 = 0.
Variance of the one-variable model is

∑N
i=1(Yi − Ȳ )2 = σ̂2

R.
Variance of the error from the unrestricted model is∑N

i=1(Yi − β0 − β1Xi)
2 = σ̂2

The ratio is:
σ̂2

σ̂2
R

= (1− r2)
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Link 3 regression R2

The variance of the restricted model can be rewritten as:

nσ2
R =

N∑
i=1

((Yi − Ŷi) + (Ŷi − Ȳ ))2

where Ŷi = δ̂0 + δ̂1(Xi − X̄ )
This collapses to:

nσ2
R =

N∑
i=1

(Yi − Ŷi)
2 +

N∑
i=1

(Ŷi − Ȳ )2

The first term is the residual sum of squared or RSS
= nŝigma2 =

∑N
i=1 ε̂

2
i

The second term is the explained sum of squares or ESS
σ2

R is called the total sum of squares or TSS.
Sample correlation, r2

(X ,Y ) is:

r2
(X ,Y ) = 1− RSS

TSS
=

ESS
TSS
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