The two-variable gaussian distribution model

Susan Thomas
IGIDR, Bombay

18 September, 2008

- MLE for single variable data, one-parameter distribution (birth data, Bernoulli)
- MLE for single variable data, two-parameter distribution (wage data, log-normal/normal)
- MLE for two-variable data, one-parameter conditional distribution, explained by multiple parameters (workforce participation-education, Bernoulli with logit transformation)

The two-variable regression model

- Variable to model: wages. Data: weekly wages, in USD.
- Additional information: education, in number of years.
- What we want to estimate: the expected wage conditional on education.

Data description

- As with workforce participation, we check whether the conditional behaviour of \log (wages) y is different from the unconditional behaviour.
- Unlike workforce participation, the comparison is done on the conditional density distribution of y.
- Observed: the median of y conditional on education increases with length of schooling.
- Conditional variance varies less with length of schooling: the range of values of y conditional on schooling does not change.
- Suggested model: y with varying conditional expectation but with unconditional variance.

The model

- Transform wages W to log(wages) w - lognormal -> normal
- Model for w :
(1) (X, y) pairs are independent
(2) Variable X is exogenous
(3) Conditional normality -
(1) $\mathrm{E}\left(y \mid X=X_{i}\right)=\left(\beta_{0}+\right.$ beta $\left._{1} X_{i}\right)$,
(2) Variance is unconditional, σ^{2}, not $\sigma_{i}^{2}=f\left(X_{i}\right)$.
- Model: $E\left(y \mid X=X_{i}\right) \sim N\left(\left(\beta_{0}+\beta_{1} X_{i}\right), \sigma^{2}\right)$
- Model parameter space: $\beta_{0}, \beta_{1}, \sigma^{2}$
- $y_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}$

Model parameter interpretation

- β_{0} is $E(y)$ with no schooling.
- β_{1} is the marginal increase in $E(y)$ with one more year of schooing.
Unlike the logit model, where β_{1} was the log(odds) ration marginal increase in the log(odds) of workforce participation.
- What is the unconditional $E(y)$?

$$
\begin{aligned}
E\left(y \mid X_{j}\right) & =\beta_{0}+\beta_{1} X_{j} \\
E(y) & =\sum_{j=0}^{J}\left(\beta_{0}+\beta_{1} X_{j}\right) f\left(X_{j}\right) \\
& =\beta_{0} \times 1+\beta_{1} \sum_{j=0}^{J} X_{j} f\left(X_{j}\right) \\
& =\beta_{0}+\beta_{1} E(X)
\end{aligned}
$$

- Syntax: β_{0}, β_{1} are called "regression coefficients".

Setting up the log(likelihood) for estimation

- Since y is conditionally gaussian distributed:

$$
\begin{aligned}
f_{\beta_{0}, \beta_{1}, \sigma^{2}}\left(y_{1}, ., y_{N} \mid X_{1}, ., X_{N}\right) & =\frac{1}{\sqrt{\left(2 \pi \sigma^{2}\right)}} e^{-\frac{1}{2} \frac{\left(y_{i}-E\left(y_{i}\right)\right)^{2}}{\sigma^{2}}} \\
& =\frac{1}{\sqrt{\left(2 \pi \sigma^{2}\right)}} e^{-\frac{1}{2} \frac{\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2}}{\sigma^{2}}}
\end{aligned}
$$

- Using this, we set up the L and the $\log (\mathrm{L}), I$ as:

$$
\begin{aligned}
L & =\prod_{i} \frac{1}{\sqrt{\left(2 \pi \sigma^{2}\right)}} e^{-\frac{1}{2} \frac{\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2}}{\sigma^{2}}} \\
& =\frac{1}{\sqrt{\left(2 \pi \sigma^{2}\right)}} e^{-\frac{1}{2} \sum_{i=1}^{N} \frac{\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2}}{\sigma^{2}}} \\
1 & =-\frac{N}{\sqrt{\left(2 \pi \sigma^{2}\right)}}-\frac{1}{2} \sum_{i=1}^{N} \frac{\left(y_{i}-\beta_{0}-\beta_{1} X_{i}\right)^{2}}{\sigma^{2}}
\end{aligned}
$$

Maximising L, minimising /

- The optimisation now involves three parameters: $\beta_{0}, \beta_{1}, \sigma^{2}$. This gives three equations:

$$
\begin{aligned}
\frac{\partial}{\partial \beta_{0}} I & =-2 \sum_{i=1}^{N}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right) \\
\frac{\partial}{\partial \beta_{1}} I & =-2 \sum_{i=1}^{N}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right) x_{i} \\
\frac{\partial}{\partial \sigma^{2}} I & =-\frac{N}{2 \sigma^{2}}+\frac{1}{2 \sigma^{4}} \sum_{i=1}^{N}\left(y_{i}-\beta_{0}-\beta_{1} X_{i}\right)^{2}
\end{aligned}
$$

- Set these to zero, and we get three equations to solve for $\left(\beta_{0}, \beta_{1}, \sigma^{2}\right)$.

Solution for β_{0}, β_{1}

- We see that the equation for σ^{2} involves both β_{0}, β_{1}.
- Equations for β_{0}, β_{1} do not have σ^{2}, so we solve for them first.
- Solution for β_{0} :

$$
\frac{\partial}{\partial \beta_{0}} I=-2 \sum_{i=1}^{N}\left(y_{i}-\beta_{0}-\beta_{1} X_{i}\right)=0
$$

$$
\sum_{i=1}^{N}\left(y_{i}\right)-N \hat{\beta}_{0}-\hat{\beta}_{1} \sum_{i=1}^{N}\left(X_{i}\right)=0
$$

$$
\hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{X}
$$

Solution for β_{1}

- Solve for the β_{1} using

$$
\frac{\partial}{\partial \beta_{1}} I=-2 \sum_{i=1}^{N}\left(y_{i}-\beta_{0}-\beta_{1} X_{i}\right) X_{i}=0
$$

$$
\begin{aligned}
\hat{\beta}_{1} \sum_{i=1}^{N} X_{i}^{2} & =\sum_{i=1}^{N}\left(y_{i} X_{i}-\bar{X}\left(\bar{y}-\hat{\beta}_{1} \bar{X}\right)\right) \\
\hat{\beta}_{1}\left(\sum_{i=1}^{N} X_{i}^{2}-\bar{X}^{2}\right) & =\sum_{i=1}^{N}\left(y_{i} X_{i}-\bar{X} \bar{y}\right) \\
\hat{\beta}_{1} & =\frac{\sum_{i=1}^{N} y_{i} X_{i}-N \bar{X} \bar{y}}{\sum_{i=1}^{N} X_{i}^{2}-\bar{X}^{2}} \\
& =\frac{\operatorname{cov}(X y)}{\hat{s}_{X}^{2}} \\
\text { And, } \hat{\beta}_{0} & =\bar{y}-\bar{X} \frac{\operatorname{cov} \hat{(X y)}}{\hat{s}_{X}^{2}}
\end{aligned}
$$

Sample correlation between $y, X, r_{(X, Y)}$

- We see MLE for the regression coefficients is a function of the sample correlation between the dependent variable y and the independent variable X.
- Sample correlation, $r_{(x, y)}=\frac{\sum_{i=1}^{N}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sqrt{\sum_{i=1}^{N}\left(X_{i}-\bar{X}\right)^{2} \sum_{i=1}^{N}\left(Y_{i}-\bar{Y}\right)^{2}}}$
- This has properties:
(1) It is free of the unit of X, Y.

Linear transformations of X, Y does not affect the value of $r_{(X, Y)}$. Eg., $r_{(X, Y)}=r_{(a X, b+c Y)}$
Non-linear transformations of X, Y do affect the value of $r_{(X, Y)}$ Eg., $r_{(X, Y)} \neq r_{(\log X, Y)}$
(2) $r_{(X, Y)}=0$ if the sample covariance is zero.
(3) $r_{(X, Y)}$ takes values between -1 and +1 .

If $Y_{i}=a+b X_{i}$, then $r_{(X, Y)}=1$

Population correlation between $y, X, \rho_{(X, Y)}$

- $\rho_{(X, Y)}=\frac{E\left(\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right)}{\sqrt{E\left(X-\mu_{X}\right)^{2} E\left(Y-\mu_{Y}\right)^{2}}}$
- It has the same properties as $r_{(X, Y)}$:
- invariance across linear transformations,
- $\rho_{(X, Y)}=0$ if X, Y are uncorrelated,
- $\rho_{(X, Y)}^{2} \leq 1$ unless $Y=a+b X$ in which case it $\rho_{(X, Y)}=1$.
- The model clearly specifies the flow of the relationship between X, Y.
- However, consider the following pair of equations:

$$
\begin{aligned}
Y_{i} & =\beta_{0}+\beta_{1} X_{i}+\epsilon_{i} \\
X_{i} & =\gamma_{0}+\gamma_{1} Y_{i}+\eta_{i}
\end{aligned}
$$

- We know $r_{X, Y}=r_{Y, X}$

Then, $r_{(X, Y)}^{2}=\hat{\beta}_{1} \hat{\gamma}_{1}$.

- When $\sigma_{X}=\sigma_{y}$, then $\hat{\beta}_{1}=r_{X, Y}=r_{Y, X}=\hat{\gamma}_{1}$.

Example with data

- $\sum_{i=1}^{N} X_{i}=48943$
- $\sum_{i=1}^{N} y_{i}=19460.1$
- $\sum_{i=1}^{N} N=3877$
- $\sum_{i=1}^{N} X_{i}^{2}=645663$
- $\sum_{i=1}^{N} y_{i}^{2}=99876$
- $\sum_{i=1}^{N} y_{i} X_{i}=247775$
- What is $\beta_{0}, \beta_{1}, \sigma^{2}$?

Example with data

- $\hat{\beta}_{0}=4.06$
- $\hat{\beta}_{1}=0.076$
- $\hat{\sigma}^{2}=0.526$

$r_{(X, Y)}$ and MLE $\hat{\sigma}^{2}$

- To understand the relationship between $r_{(X, Y)}$ and MLE $\hat{\sigma}^{2}$, we need to understand the relationship between X and Y better.
- Consider a new form of the X, Y relationship:

$$
Y_{i}=\beta_{0} X_{0, i}+\beta_{1} X_{1, i}+\epsilon_{i}
$$

where $X_{0, i}=1$ and $X_{1, i}$ is the following regression equation

$$
X_{i}=\gamma_{1} 1+\omega_{i}=\gamma_{1} X_{0, i}+\omega_{i}
$$

Interpreting equation: $X_{i}=\gamma_{1} 1+\epsilon_{i}$

- X_{i} is a continuous rv that can take any value.
- ϵ_{i} is gaussian distributed.
- The MLE $\hat{\gamma}_{1}$ will be:

$$
\hat{\gamma}_{1}=\frac{1}{N} \sum_{i=1}^{N} X_{i}=\bar{X}
$$

- Thus, this regression equationt gives you the value of the sample mean of the dependent variable as the regression coefficient, γ_{1}.

Reparameterised model $Y_{i} \mid X_{i}$

- We can then rewrite $Y_{i}=\beta_{0} X_{0, i}+\beta_{1} X_{1, i}+\epsilon_{i}$ as

$$
\begin{aligned}
Y_{i} & =\beta_{0} X_{0, i}+\beta_{1}\left(\bar{X} X_{0, i}+\left(X_{i}-\bar{X}\right)\right)+\epsilon_{i} \\
& =\left(\beta_{0}+\beta_{1} \bar{X}\right) X_{0, i}+\beta_{1}\left(X_{i}-\bar{X}\right)+\epsilon_{i} \\
& =\delta_{0} X_{0, i}+\delta_{1}\left(X_{i}-\bar{X}\right)+\epsilon_{i}
\end{aligned}
$$

- This is a useful reparameterisation because $X_{0, i},\left(X_{i}-\bar{X}\right)$ are orthogonal to each other (by definition).
- Two outcomes:

$$
\begin{aligned}
\sum_{i=0}^{N}\left(X_{i}-\bar{X}\right) & =0 \\
\sum_{i=0}^{N} X_{0, i}\left(X_{i}-\bar{X}\right) & =0
\end{aligned}
$$

MLE coefficients for the reparameterised model $Y_{i} \mid X_{i}$

- Differentiating / wrt δ_{0} gives:

$$
-2 \sum_{i=1}^{N}\left(Y_{i}-\delta_{0}-\delta_{1}\left(X_{i}-\bar{X}\right)\right)=0
$$

Solution: $\hat{\delta}_{0}=\bar{Y}$

- Differentiating / wrt δ_{1} gives:

$$
-2 \sum_{i=1}^{N}\left(Y_{i}-\delta_{0}-\delta_{1}\left(X_{i}-\bar{X}\right)\right)\left(X_{i}-\bar{X}\right)=0
$$

Solution: $\hat{\delta}_{1}=\frac{\sum_{i=1}^{N} Y_{i}\left(X_{i}-\bar{X}\right)}{\sum_{i=1}^{N}\left(X_{i}-\bar{X}\right)^{2}}$

$$
\hat{\delta}_{1}=\hat{\beta}_{1}!
$$

MLE estimates are the same across rescaling of data.

Link 1 between $r_{(X, Y)}$ and MLE $\hat{\sigma}^{2}$

- We found out that:

$$
\hat{Y}_{i}=\beta_{0}+\beta_{1} X_{i}=\delta_{0}+\delta_{1}\left(X_{i}-\bar{X}\right)
$$

- Or $\beta_{1}=\frac{\sum_{i=1}^{N} Y_{i}\left(X_{i}-\bar{X}\right)}{\sum_{i=1}^{N}\left(X_{i}-\bar{X}\right)^{2}}$
- Using the above equality of model and reparameterised model, we calculate that:

$$
\hat{\sigma}^{2}==\left(1-r^{2}\right) \sum_{i=1}^{N}\left(Y_{i}-\bar{Y}\right)^{2}
$$

Link 2 between $r_{(X, Y)}$ and MLE $\hat{\sigma}^{2}$

- The one-variable model is a restriction on the model $Y_{i}=\beta_{0}+\beta_{1} X_{i}$ where the restriction is $\beta_{1}=0$.
- Variance of the one-variable model is $\sum_{i=1}^{N}\left(Y_{i}-\bar{Y}\right)^{2}=\hat{\sigma}_{R}^{2}$.
- Variance of the error from the unrestricted model is
$\sum_{i=1}^{N}\left(Y_{i}-\beta_{0}-\beta_{1} X_{i}\right)^{2}=\hat{\sigma}^{2}$
- The ratio is:

$$
\frac{\hat{\sigma}^{2}}{\hat{\sigma}_{R}^{2}}=\left(1-r^{2}\right)
$$

Link 3 regression R^{2}

- The variance of the restricted model can be rewritten as:

$$
n \sigma_{R}^{2}=\sum_{i=1}^{N}\left(\left(Y_{i}-\hat{Y}_{i}\right)+\left(\hat{Y}_{i}-\bar{Y}\right)\right)^{2}
$$

where $\hat{Y}_{i}=\hat{\delta}_{0}+\hat{\delta}_{1}\left(X_{i}-\bar{X}\right)$

- This collapses to:

$$
n \sigma_{R}^{2}=\sum_{i=1}^{N}\left(Y_{i}-\hat{Y}_{i}\right)^{2}+\sum_{i=1}^{N}\left(\hat{Y}_{i}-\bar{Y}\right)^{2}
$$

- The first term is the residual sum of squared or RSS
$=n \hat{s i g m a}{ }^{2}=\sum_{i=1}^{N} \hat{\epsilon}_{i}^{2}$
- The second term is the explained sum of squares or ESS
- σ_{R}^{2} is called the total sum of squares or TSS.
- Sample correlation, $r_{(X, Y)}^{2}$ is:

$$
r_{(X, Y)}^{2}=1-\frac{\mathrm{RSS}}{\mathrm{TSS}}=\frac{\mathrm{ESS}}{\mathrm{TSS}}
$$

