Inference for the two-variable gaussian model

Susan Thomas IGIDR, Bombay

23 September 2008

Recap

• Two variable, gaussian distribution model:

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$

 $\epsilon_i \sim N(0, \sigma^2)$

- MLE $\hat{\beta}_1 = \frac{\sum_{i=1}^N Y_i(X_i \bar{X})}{\sum_{i=1}^N (X_i \bar{X})^2}$ $\hat{\beta}_1$ is a function of r_{XY} , sample correlation between X, Y.
- MLE $\hat{eta}_0 = ar{Y} \hat{eta}_1 ar{X}$
- MLE $\hat{\sigma}^2 = \frac{1}{N} \sum_{i=1}^{N} \hat{\epsilon}_i^2 = \frac{1}{N} \sum_{i=1}^{N} (Y_i \hat{\beta}_0 \hat{\beta}_1 X_i)^2$

Links between r_{XY} and the MLE estimates

$$\hat{\beta}_1 = r_{XY} \frac{s_Y}{s_X}$$

•
$$\hat{\sigma}_{mle}^2 = (1 - r_{XY}^2)\sigma_Y^2$$

•
$$\hat{\sigma}_{mle}^2 = (1 - r_{XY}^2)\sigma_Y^2 = (1 - r_{XY}^2)\sigma_R^2$$

$$\bullet \ r_{XY}^2 = 1 - \frac{\sigma_{mle}^2}{\sigma_Y^2}$$

Inference for the two-variable gaussian distribution model

Two paths of inferences

- Confidence intervals for the parameters
- Confidence intervals for E(y)
- LR test and it's asymptotic distribution.
- Variants of the LR test.

Confidence intervals for MLE $\hat{\beta}_1$

 The reparameterised version of the model is simpler to work with:

$$Y_i = \gamma_0 X_{0,i} + \gamma_1 (X_{1,i} - \bar{X}) + \omega_i$$

This gives:

$$\hat{\gamma}_{1} = \hat{\beta}_{1} = \frac{\sum_{i=1}^{N} (X_{1,i} - \bar{X}) Y_{i}}{\sum_{i=1}^{N} (X_{1,i} - \bar{X}_{1})^{2}}$$

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{N} (X_{1,i} - \bar{X}_{1})^{2}}{\sum_{i=1}^{N} (X_{1,i} - \bar{X}_{1}) (\beta_{0} X_{0,i} + \beta_{1} X_{1,i} + \epsilon_{i})}$$
Fact: $E((X_{1} - \bar{X}_{1}) X_{0}) = 0$
Fact: $E((X_{1} - \bar{X}_{1}) X_{1}) = E(X_{1}^{2}) - (\bar{X}_{1})^{2}$

$$= E(X_{1} - \bar{X}_{1}) (X_{1} - \bar{X}_{1}) = E(X_{1} - \bar{X}_{1})^{2}$$
Then, $\hat{\beta}_{1} = \beta_{1} + \frac{\sum_{i=1}^{N} (X_{1,i} - \bar{X}_{1}) \epsilon_{i}}{\sum_{i=1}^{N} (X_{1,i} - \bar{X}_{1})^{2}}$

What is $E(\hat{\beta}_1)$?

$$E(\hat{\beta}_{1}) = \beta_{1} + E(\frac{\sum_{i=1}^{N} (X_{1,i} - \bar{X}_{1})\epsilon_{i}}{\sigma_{X_{1}}^{2}})$$

$$= \beta_{1} + \frac{1}{\sum_{i=1}^{N} (X_{1,i} - \bar{X}_{1})} \sum_{i=1}^{N} (X_{1,i} - \bar{X}_{1}) E(\epsilon_{i})$$

$$= \beta_{1}$$

 $\hat{\beta}_1$ is an unbiased estimator of β_1 .

What is $var(\hat{\beta}_1^2)$?

$$\operatorname{var}(\hat{\beta}_{1}) = E(\hat{\beta}_{1} - \beta_{1})^{2} = E(\beta_{1} + \frac{\sum_{i=1}^{N} (X_{1,i} - \bar{X}_{1})\epsilon_{i}}{\sum_{i=1}^{N} (X_{1,i} - \bar{X}_{1})^{2}} - \beta_{1})^{2}$$

$$= E\frac{\sum_{i=1}^{N} (X_{1,i} - \bar{X}_{1})\epsilon_{i}}{(\sum_{i=1}^{N} (X_{1,i} - \bar{X}_{1})^{2})^{2}}$$

$$= \frac{1}{(\sum_{i=1}^{N} (X_{1,i} - \bar{X}_{1})^{2})^{2}} E(\sum_{i=1}^{N} (X_{1,i} - \bar{X}_{1})\epsilon_{i})^{2}$$

$$= \frac{1}{(\sum_{i=1}^{N} (X_{1,i} - \bar{X}_{1})^{2})^{2}} \sum_{i=1}^{N} ((X_{1,i} - \bar{X}_{1})^{2} E(\epsilon_{i}^{2})$$

$$+ \sum_{j=1, j \neq i}^{N} (X_{1,i} - \bar{X}_{1})(X_{1,j} - \bar{X}_{1}) E(\epsilon_{i}\epsilon_{j}))$$

$$= \frac{\sum_{i=1}^{N} (X_{1,i} - \bar{X}_{1})^{2} \sigma_{\epsilon}^{2}}{(\sum_{i=1}^{N} (X_{1,i} - \bar{X}_{1})^{2})^{2}} = \frac{\sigma_{\epsilon}^{2}}{\sum_{i=1}^{N} (X_{1,i} - \bar{X}_{1})^{2}}$$

Distribution of $(\hat{\beta}_1)$ and confidence intervals

- $\hat{eta}_1 \sim N(eta_1, rac{\sigma_\epsilon^2}{\sum_{i=1}^N (X_{1,i} \bar{X}_1)^2})$
- The 95% confidence interval for β_1 is:

$$\hat{\beta}_1 - 2 \frac{\sigma^2}{\sum_{i=1}^N (X_{1,i} - \bar{X}_1)^2} \le \beta_1 \le \hat{\beta}_1 + 2 \frac{\sigma^2}{\sum_{i=1}^N (X_{1,i} - \bar{X}_1)^2}$$

• Similarly, $\hat{\beta}_0 \sim N(\beta_0, \frac{\sigma^2}{\sum_{i=1}^N (X_{1,i} - \bar{X}_1)^2})$ Using this, we can create a similar confidence interval for β_0

95% confidence intervals for the given data

- $\sum_{i=1}^{N} X_i = 48943$
- $\sum_{i=1}^{N} y_i = 19460.1$
- $\sum_{i=1}^{N} N = 3877$
- $\sum_{i=1}^{N} X_i^2 = 645663$
- $\sum_{i=1}^{N} y_i^2 = 99876$
- $\sum_{i=1}^{N} y_i X_i = 247775$
- $\hat{\beta}_0 = 4.06$
- $\hat{\beta}_1 = 0.076$
- $\hat{\sigma}^2 = 0.526$
- What is the 95% confidence interval for β_0, β_1 ?
- $se(\beta_0) = 0.056$, $se(\beta_1) = 0.0043$
- 95% CI: $3.95 \le \beta_1 \le 4.17$, $0.067 \le \beta_1 \le 0.085$

LR test, hypothesis, form

- $H_0: \beta_1 = 0$
- LR statistic: $-2log(L_R/L)$
- What is the form of L?

Likelihood evaluated at MLE

• L at the mle $(\hat{\beta}_0, \hat{\beta}_1, \hat{\sigma}^2)$ works out to be:

$$L = (2\pi\hat{\sigma}^2 e)^{-\frac{n}{2}}$$

- The L can be expressed as only a function of $\hat{\sigma}^2$.
- Thus, we can rewrite the LR statistic as:

$$-2\left(rac{\hat{\sigma}_R^2}{\hat{\sigma}_U^2}
ight)^{-rac{N}{2}}$$

Likelihood evaluated at MLE, and restriction

• Restricted model is: $\beta_1 = 0$ or

$$Y_i = \beta_0 + \epsilon_i$$

- β_0 works out to be \bar{Y} , and $\epsilon_i = (Y_i \bar{Y})$.
- Therefoore: $\hat{\sigma}_{\textit{mle}}^2 = \hat{\sigma}_{\epsilon}^2 = \hat{\sigma}_{\textit{Y}}^2$
- Therefore, $\hat{\sigma}_R^2 = \hat{\sigma}_Y^2$
- LR statistic is:

$$-2\log(\frac{\hat{\sigma}_{Nle}^2}{\hat{\sigma}_{mle}^2})^{-\frac{N}{2}} = -N\log(\frac{\hat{\sigma}_{mle}^2}{\hat{\sigma}_{Y}^2})$$

- But we know that $\hat{\sigma}_{mle}^2 = (1 r_{XY}^2)\sigma_Y^2$
- Therefore:

$$\frac{\hat{\sigma}_{Y}^{2}}{\hat{\sigma}_{mle}^{2}} = (1 - r_{XY}^{2})^{-N/2}$$

$$LR = -N\log(1-r_{XY}^2)$$

LR test distribution

- Two tailed test distribution: $\chi^2(1)$
- One tailed test statistic: $\omega = (\text{sign H}_A)\sqrt{(LR)} \sim N(0,1)$