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@ Two variable, gaussian distribution model:

Yi = Bo+ b1 X +e
e ~ N(0,0?)

4 _ X YiXi=X)
© MLE B = S %

B4 is a function of ryy, sample correlation between X, Y.
@ MLE 3y = Y — 31X
© MLE 6% = § 330 & = § 2004 (Y — fo — B Xi)?
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Links between rxy and the MLE estimates

A S
@ [t =rxvgy
A2 2\ 2
® 57 =(1—rgy)oy
A2 2\ 2 2
@ G =(1—rgy)oy = —ryy)og
2
2 9 mi
o rgy=1- U";Ye
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Inference for the two-variable gaussian
distribution model
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Two paths of inferences

@ Confidence intervals for the parameters
@ Confidence intervals for E(y)

@ LR test and it's asymptotic distribution.
@ Variants of the LR test.
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Confidence intervals for MLE 3;

@ The reparameterised version of the model is simpler to

work with:
Yi =10Xo0, + 71 (X1, — X) + wi
@ This gives:
A - X)Y;
=0 = X (X )
ZI 1( - X1)
B = Z/N1(X — X)(BoXo,i + 1 X1+ €)

S (X = X1)?
FactE((Xi — Xi)X) = 0
FactE((Xi — X1)X1) = E(X?) - (X)?

= Xi)(

Then, 1 = B+
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What is E([31)?

N
A Xi,i i
E) = o+ e X0
UX1
1 N
= B+ =5 > (X1 — X1)E(e))

(B4 is an unbiased estimator of /3.
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What is var(2)?

A = (%
var — £ N
(B1) E(B1 — B1)° = E(B1 + ZI 1(X1 _X1)2

= ZI 1( 3_(1)6,‘
(Z/ (X1, — X1)?)?
1 N )
- ¥ E X1 — Xi)ei)?
(4 (X1 — X1)2)2 (;( 10— X1)ei)
N
B N s > (X1 — X1)?E(e?)

Oin (X1, — X1)?)? —

N
+ Z (X4 g X1 (X4 J— X1)E(€/6/'))
J=1,#
2171()(1,/ — Xi)202 _ o2
(0 (= X022 o0 (X = X0)?
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Distribution of (31) and confidence intervals

~ 0_3
° /81 NN(ﬁ1’Zj,\I:1(X1,/_)_(1)2)
@ The 95% confidence interval for 3 is:

o? N o2

B -2 —— <1 <B1+2 -
S (X = X1)? Sy (X — Xi)?
2

@ Similarly, 3y ~ N(5o, ﬁ)
2
Using this, we can create a similar confidence interval for

Bo
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95% confidence intervals for the given data

o YN X; = 48943

o >Ny =19460.1

o >N, N=3877

o YN, X? = 645663

o >N, y2=99876

o SN yiX; = 247775

@ 3y =4.06

@ 3 =0.076

@ 52 =0.526

@ What is the 95% confidence interval for 3y, 517
@ se(fp) = 0.056, se(By) = 0.0043

@ 95% Cl: 3.95 < 3y < 4.17,0.067 < (3 < 0.085
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LR test, hypothesis, form

o Ho . ,81 =0
@ LR statistic: —2/og(Lg/L)
@ What is the form of L?
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Likelihood evaluated at MLE

@ L at the mle (5,751, 62) works out to be:
L = (2762%e) "2
2-

@ The L can be expressed as only a function of &
@ Thus, we can rewrite the LR statistic as:
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Likelihood evaluated at MLE, and restriction

@ Restricted model is: 3y =0 or
Yi = Bo + €
@ 3y worksouttobe Y,and ¢; = (Y; — Y).

S A2 AR a2
@ Therefoore: 67, = 62 = 6y
A2 A2
@ Therefore, 6% = 6%
@ LR statistic is:
~2 ~2
g N (2
—2log(—z~)" 2 = —Nlog(—Z¢)
g g
mle Y

A2 2 2
@ But we know that 2, = (1 — ry)o%
@ Therefore:
6’2
Y
A2
O mle

LR = —Nlog(1 — r&y)
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LR test distribution

@ Two tailed test distribution: x?(1)
@ One tailed test statistic: w = (sign Hy)+/(LR) ~ N(0, 1)
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