# Matrix algebra and the linear regression model

Susan Thomas IGIDR, Bombay

25 September 2008

#### Model $Y_i = \beta_1 X_i + \epsilon_i$

- Consider a two variable, gaussian distribution model without an intercept:
  - Independence:  $Y_i, X_i$  are independent across i
  - Normality conditional on  $X_i$ :  $Y_i \sim N[\beta_1 X_i, \sigma^2]$
  - X<sub>i</sub> is exogenous

• 
$$I = -\frac{N}{2}\log(2\pi\sigma^2) - \frac{1}{2\sigma^2}\sum_{i=1}^{N}(Y_i - \beta_1 X_i)^2$$

# MLE $\hat{eta}_1$

• 
$$\frac{\partial I}{\partial \beta_1} = \sum_{i=1}^{N} (Y_i - \beta_1 X_i) X_i = 0$$

• 
$$\hat{\beta}_1 = \sum_{i=1}^N (Y_i X_i) / \sum_{i=1}^N (X_i X_i)$$

#### MLE $\hat{\sigma}^2$

$$\bullet \frac{\partial I}{\partial \sigma^{2}} = -\frac{N}{(2\sigma^{2})} + \frac{1}{2\sigma^{4}} \sum_{i=1}^{N} (Y_{i} - \hat{\beta}_{1} X_{i})^{2} = 0$$

$$\hat{\sigma}^{2} = \frac{1}{N} \sum_{i=1}^{N} (Y_{i} - \hat{\beta}_{1} X_{i})^{2}$$

$$= \frac{1}{N} \sum_{i=1}^{N} (Y_{i}^{2} - 2\hat{\beta}_{1} X_{i} Y_{i} - \hat{\beta}^{2} X_{i}^{2})$$

$$= \frac{1}{N} \sum_{i=1}^{N} (Y_{i}^{2} - 2\frac{\sum_{i=1}^{N} (Y_{i} X_{i})}{\sum_{i=1}^{N} (X_{i})^{2}} X_{i} Y_{i} - \frac{\sum_{i=1}^{N} (Y_{i} X_{i})^{2}}{\sum_{i=1}^{N} (X_{i})^{2}} X_{i}^{2})$$

$$= \frac{1}{N} (\sum_{i=1}^{N} Y_{i}^{2} - \frac{\sum_{i=1}^{N} (Y_{i} X_{i}) \sum_{i=1}^{N} (Y_{i} X_{i})}{\sum_{i=1}^{N} X_{i}^{2}})$$

$$= \frac{1}{N} (\sum_{i=1}^{N} Y_{i}^{2} - \sum_{i=1}^{N} (Y_{i} X_{i}) (\sum_{i=1}^{N} X_{i}^{2})^{-1} \sum_{i=1}^{N} (Y_{i} X_{i}))$$

Is hard work!



# Matrix notation gives simplicity and generalisation

#### Matrix notation for $Y_i = \beta_1 X_i + \epsilon_i$

Y<sub>i</sub>, X<sub>i</sub> are N-dimensional vectors:

$$Y = \left( egin{array}{c} Y_1 \\ Y_2 \\ \cdots \\ Y_N \end{array} 
ight), \qquad X = \left( egin{array}{c} X_1 \\ X_2 \\ \cdots \\ X_N \end{array} 
ight)$$

•  $\beta$  is a 1-dimensional vector in this problem.

• 
$$X'Y = (X_1, \ldots, X_N) \begin{pmatrix} Y_1 \\ Y_2 \\ \ldots \\ Y_N \end{pmatrix} = \sum_{i=1}^N X_i Y_i$$

• 
$$X'X = (X_1, \ldots, X_N) \begin{pmatrix} X_1 \\ X_2 \\ \ldots \\ X_N \end{pmatrix} = \sum_{i=1}^N X_i X_i$$



#### The Data Matrix

• The data is a matrix D = (Y, X) such that

$$D = (Y, X) = \begin{pmatrix} Y_1 & X_1 \\ Y_2 & X_2 \\ & \ddots \\ & & Y_N & X_N \end{pmatrix}$$

• Then, a convenient matrix is D'D =:

$$(Y,X)'(Y,X) = \begin{pmatrix} Y' \\ X' \end{pmatrix} (Y,X) = \begin{pmatrix} Y'Y & Y'X \\ X'Y & X'X \end{pmatrix}$$

• Features of *D'D*: Diagonal are variances and positive. Symmetric about the diagonal.



#### Matrix notation in the MLE framework

- The model for  $y_i$  without an intercept is  $y_i = \beta_1 x_i + \epsilon_i$
- Matrix form:

$$Y = \begin{pmatrix} Y_1 \\ Y_2 \\ \dots \\ Y_N \end{pmatrix} = \begin{pmatrix} X_1 \\ X_2 \\ \dots \\ X_N \end{pmatrix} \beta + \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \dots \\ \epsilon_N \end{pmatrix}$$

Note: Dimensionality of  $Y = X = \epsilon = N \times 1$ .

• 
$$Y = X\beta + \epsilon$$



#### Matrix notation in the MLE framework

- $I = I_{Y|X}(\beta, \sigma^2) = -\frac{N}{2} \log(2\pi\sigma^2) \frac{1}{2\sigma^2} (Y X\beta)'(Y X\beta)$
- Maximising *I* is the same as minimising SSE =  $(Y X\beta)'(Y X\beta)$  (with  $(Y X\beta) = \epsilon$ ).
- As before, the maximum is obtained by setting  $\partial I/\partial \beta = 0$ .
- We can use matrix calculus to find out that:

$$\hat{\beta} = (X'X)^{-1}X'Y$$

Similarly, we find that:

$$\hat{\sigma}^2 = \frac{1}{N} (Y'Y - Y'X(X'X)^{-1}X'Y)$$

Note: This notation is convenient, because more exogenous variables will have the same solution form in this matrix notation.



# Getting the MLE RSS from the matrix form

• Now if  $\hat{\beta} = (X'X)^{-1}(X'Y)$  then  $\hat{\beta}' = (Y'X)(X'X)^{-1}$  and

$$\begin{pmatrix} 1 & -Y'X(X'X)^{-1} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} Y'Y & Y'X \\ X'Y & X'X \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -(X'X)^{-1}X'Y & 1 \end{pmatrix}$$

$$= \begin{pmatrix} Y'Y - Y'X(X'X)^{-1}X'Y & 0 \\ 0 & X'X \end{pmatrix}$$

Which is:

$$\left(\begin{array}{cc} 1 & -\hat{\beta}' \\ 0 & 1 \end{array}\right) D'D \left(\begin{array}{cc} 1 & 0 \\ -\hat{\beta} & 1 \end{array}\right) = \left(\begin{array}{cc} N\hat{\sigma}^2 & 0 \\ 0 & X'X \end{array}\right)$$



# Recap: on se of $\hat{\beta}$

- Recall for  $Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$
- $E(\hat{\beta}_1) = \beta$
- $\operatorname{var}(\hat{\beta}_1) = \sigma_{\epsilon}^2 / (\sum_{i=1}^{N} (X_i \bar{X})^2)$
- Therefore,  $\begin{pmatrix} 1 & -\hat{\beta}' \\ 0 & 1 \end{pmatrix} D'D \begin{pmatrix} 1 & 0 \\ -\hat{\beta} & 1 \end{pmatrix}$  contain the elements to calculate the variance of the MLE  $\hat{\beta}$ .

# Rewriting the model SSE in matrix notation

- SSE =  $(Y X\beta)'(Y X\beta)$
- With a sample, we will have estimated  $\hat{\beta}$ . This gives us an estimated  $\hat{Y} = X\hat{\beta}$ .
- SSE can be rewritten using the estimate,  $\hat{Y}$  as follows:

$$\epsilon = Y - X\beta = Y - X\hat{\beta} + X\hat{\beta} - X\beta 
= (Y - X\hat{\beta}) + X(\hat{\beta} - \beta)$$
Estimated residual,  $\hat{\epsilon} = Y - X\hat{\beta}$ 

$$SSE = \epsilon' \epsilon = \hat{\epsilon} \hat{\epsilon}' + (\hat{\beta} - \beta)' X' X(\hat{\beta} - \beta)$$

- $\hat{\epsilon}\hat{\epsilon}'$  is the estimated SSE.
- $\hat{\beta} \beta$  is the error in the estimation of  $\beta$ .
- The SSE will be a minimum when  $\hat{\beta} \beta = 0$ . le, when the estimation error is zero and  $\hat{\beta} = \beta$



# The two variable regression model with intercept

# Matrix notation for $Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$

• 
$$Y = X\beta + \epsilon$$

$$Y = \begin{pmatrix} Y_1 \\ Y_2 \\ \dots \\ Y_N \end{pmatrix} = \begin{pmatrix} 1 & X_1 \\ 1 & X_2 \\ \dots \\ 1 & X_N \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix} + \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \dots \\ \epsilon_N \end{pmatrix}$$
 which gives

$$Y_1 = \beta_0 + \beta_1 X_1 + \epsilon_1$$

$$Y_2 = \beta_0 + \beta_1 X_2 + \epsilon_2$$

$$\dots Y_N = \beta_0 + \beta_1 X_N + \epsilon_N$$

• Since the form of the model remains the same,  $Y = X\beta + \epsilon$ , we can use the same form for the esimate  $\hat{\beta} = (X'X)^{-1}X'Y$ 



# Solution $\hat{\beta}$ for the two-variable problem

• 
$$X'X$$
 is:  $\left(\begin{array}{ccc} \sum_{i=1}^{N} 1^2 & \sum_{i=1}^{N} X_i \\ \sum_{i=1}^{N} X_i & \sum_{i=1}^{N} X_i^2 \end{array}\right)$ 

• 
$$X'Y$$
 is:  $\left(\begin{array}{c} \sum_{i=1}^{N} Y_i \\ \sum_{i=1}^{N} X_i Y_i \end{array}\right)$ 

•  $\beta = (X'X)^{-1}X'Y \rightarrow (X'X)\beta = X'Y$ 

$$\left(\begin{array}{cc}
N & \sum_{i=1}^{N} X_i \\
\sum_{i=1}^{N} X_i & \sum_{i=1}^{N} X_i^2
\end{array}\right) \left(\begin{array}{c}
\beta_0 \\
\beta_1
\end{array}\right) = \left(\begin{array}{c}
\sum_{i=1}^{N} Y_i \\
\sum_{i=1}^{N} X_i Y_i
\end{array}\right)$$

This gives the same first derivative equations as before:

$$N\beta_0 + \beta_1 \sum_{i=1}^{N} X_i = \sum_{i=1}^{N} Y_i$$
$$\beta_0 \sum_{i=1}^{N} X_i + \beta_1 \sum_{i=1}^{N} X_i^2 = \sum_{i=1}^{N} Y_i X_i$$

#### The linear regression model

### $Y_i = \beta_0 + X\beta + u_i$

- Y<sub>i</sub> dependent variable
- X<sub>i</sub> independent variable
- *u<sub>i</sub>* error, random variable, i.i.d.
- $(\beta_0, \beta_1, \dots, \beta_{X_i})$  population parameters.
- i subscript, denoting data points
- Simplest: Only one independent variable, x<sub>1</sub>

  - 2 Linear: Linear in parameters, Not variables.
  - **3**  $u_i \rightarrow \text{difference between } Y_i \text{ and } (\beta_0 + \beta_1 X_i) Y_i \beta_0 \beta_1 X_i = u_i$



### Implication of the "population" relation beween Y, X



#### Interpreting the role of $u_i$

 $u_i$  is included in the regression to accommodate at least four types of effects:

- Omitted variables
- Non-linearities in X
- Measurement error (in Y, X)
- Randomness of behaviour/ effects.

#### Interpretation of $\beta_0, \beta_1$

- Interpretation of  $\beta_1$ : marginal effect of  $X_i$  on  $Y_i$
- Interpretation of  $\beta_0$ : less simple. It could contain the effect of all the omitted variables and other effects.
- Model error:  $Y_i \beta_0 + \beta_1 X_i = u_i$

# From population to sample

- We estimate  $\hat{\beta}_0, \hat{\beta}_1$ .
- We use this to get Ŷ<sub>i</sub>.
   This is the *estimated value* of Y<sub>i</sub>.
- The estimated error is  $\hat{u}_i = Y_i \hat{Y}_i$ .
- Both "population regression" and the "sample regression" have errors.

$$u_i = Y_i - \beta_0 - \beta_1 X_i$$

$$\hat{u}_i = Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_i$$

- Objective of regression approach is the get the "best"  $\hat{\beta}_1$ .
- Given the model, the best that we can get is  $\hat{\beta}_1 = \beta_1$ . This will give us  $SSE_{\hat{u}_i}$  will be the same as  $SSE_{u_i}$ .



# Implication of the regression beween Y, X



# Estimation by Ordinary Least Squares

• Method of OLS: choose  $(\hat{\beta}_0, \hat{\beta}_1)$  to minimize the sum of squared errors (SSE).

$$\hat{u}_{i} = Y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}X_{i} 
\hat{u}_{i^{2}} = (Y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}X_{i})^{2}$$

•  $ESS \equiv \sum \hat{u}_i^2 = \sum (Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_i)^2$ 

Minimize 
$$\hat{\beta}_0, \hat{\beta}_1, X_i$$
 
$$\sum \hat{u}_i^2 = \sum (Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_i)^2$$



#### The rationale of OLS

#### Why calculate the SSE?

- Strips the direction of errors
- Penalises large errors.

$$(-1,2,+1,-2) \longrightarrow (-1,-1,-1,3)$$
  
 $ESS = 10$   $ESS = 12$ 

 This approach gives us what is called the normal equations:

$$ESS = \sum (Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_i)^2$$

$$\frac{\partial ESS}{\partial \hat{\beta}_0} = \sum 2(Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_i)(-1)$$

$$\frac{\partial ESS}{\partial \hat{\beta}_1} = \sum 2(Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_i)(-X_i)$$

Set these to zero (just as in the case of the MLE):

$$\sum 2(Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_i)(-1) = 0$$
  
$$\sum 2(Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_i)(-X_i) = 0$$



• Two equations in two unknowns( $\hat{\beta}_0, \hat{\beta}_1$ ). Solve them

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}$$
  
Sample regression line passes through mean.



$$\Rightarrow \sum_{i} \left[ Y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1} X_{i} \right] [X_{i}] = 0$$
or, 
$$\sum_{i} Y_{i} X_{i} - \hat{\beta}_{0} \sum_{i} X_{i} - \hat{\beta}_{1} \sum_{i} X_{i}^{2} = 0$$
or, 
$$\sum_{i} Y_{i} X_{i} = \hat{\beta}_{0} \sum_{i} X_{i} + \hat{\beta}_{1} \sum_{i} X_{i}^{2}$$
or, 
$$\sum_{i} Y_{i} X_{i} = \left[ \frac{1}{N} \sum_{i} Y_{i} - \hat{\beta}_{1} \frac{1}{N} \sum_{i} X_{i} \right] \sum_{i} X_{i} + \hat{\beta}_{1} \sum_{i} X_{i}^{2}$$
or, 
$$\sum_{i} Y_{i} X_{i} = \frac{1}{N} \sum_{i} Y_{i} \sum_{i} X_{i} - \hat{\beta}_{1} \frac{1}{N} \sum_{i} X_{i} \sum_{i} X_{i} + \hat{\beta}_{1} \sum_{i} X_{i}^{2}$$
or, 
$$\sum_{i} Y_{i} X_{i} = \frac{1}{N} \sum_{i} Y_{i} \sum_{i} X_{i} + \hat{\beta}_{1} \left[ \sum_{i} X_{i}^{2} - \frac{1}{N} (\sum_{i} X_{i})^{2} \right]$$

$$\hat{\beta}_{1} = \frac{\sum_{i} Y_{i} X_{i} - \frac{1}{N} \sum_{i} Y_{i} \sum_{i} X_{i}}{\sum_{i} X_{i}^{2} - \frac{1}{N} (\sum_{i} X_{i})^{2}}$$

$$\sum (X_{i} - \bar{X})(Y_{i} - \bar{Y}) = \sum (X_{i}Y_{i} - X_{i}\bar{Y} - \bar{X}Y_{i} + \bar{X}\bar{Y})$$

$$= \sum X_{i}Y_{i} - \bar{Y}\sum X_{i} - \bar{X}\sum Y_{i} + \sum \bar{X}\bar{Y}$$

$$= \sum X_{i}Y_{i} - N\bar{X}\bar{Y}$$

$$= \sum X_{i}Y_{i} - \frac{1}{N}\sum X_{i}\sum Y_{i}$$
Also 
$$\sum (X_{i} - \bar{X})(X_{i} - \bar{X}) = \sum X_{i}^{2} - \frac{1}{N}(\sum X_{i})^{2}$$
Therefore 
$$\hat{\beta}_{1} = \frac{S_{XY}}{S_{YY}}$$

Alternatively:

$$\hat{\beta}_1 = \frac{\sum x_i y_i}{\sum x_i^2} = \frac{\sum (X_i - \bar{X})(Y_i - \bar{Y})}{\sum (X_i - \bar{X})^2}$$

- $(\hat{\beta}_0, \hat{\beta}_1)$  sample estimates of the population parameters  $(\beta_0, \beta_1)$   $\hat{\beta}_0 + \hat{\beta}_1 X \longrightarrow$  estimated line/ sample regression line.
- $\hat{\beta}_1$  cannot be computed if  $\sum (X_i \bar{X})^2 = 0$  i.e. all the  $X_i$ 's are same. This leads to an important assumption that cannot be relaxed (*unless*  $\beta_0 = 0$ )

Sample variance – 
$$\widehat{var(X)} = \frac{1}{N-1} \sum (X_i - \bar{X})^2 \neq 0$$

