Matrix algebra and the linear regression model

Susan Thomas
IGIDR, Bombay

25 September 2008

Model $Y_{i}=\beta_{1} X_{i}+\epsilon_{i}$

- Consider a two variable, gaussian distribution model without an intercept:
- Independence: Y_{i}, X_{i} are independent across i
- Normality conditional on $X_{i}: Y_{i} \sim N\left[\beta_{1} X_{i}, \sigma^{2}\right]$
- X_{i} is exogenous
- $I=-\frac{N}{2} \log \left(2 \pi \sigma^{2}\right)-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{N}\left(Y_{i}-\beta_{1} X_{i}\right)^{2}$

MLE $\hat{\beta}_{1}$

- $\frac{\partial I}{\partial \beta_{1}}=\sum_{i=1}^{N}\left(Y_{i}-\beta_{1} X_{i}\right) X_{i}=0$
- $\hat{\beta}_{1}=\sum_{i=1}^{N}\left(Y_{i} X_{i}\right) / \sum_{i=1}^{N}\left(X_{i} X_{i}\right)$

$$
\begin{aligned}
\frac{\partial l}{\partial \sigma^{2}} & =-\frac{N}{\left(2 \sigma^{2}\right)}+\frac{1}{2 \sigma^{4}} \sum_{i=1}^{N}\left(Y_{i}-\hat{\beta}_{1} X_{i}\right)^{2}=0 \\
\hat{\sigma}^{2} & =\frac{1}{N} \sum_{i=1}^{N}\left(Y_{i}-\hat{\beta}_{1} X_{i}\right)^{2} \\
& =\frac{1}{N} \sum_{i=1}^{N}\left(Y_{i}^{2}-2 \hat{\beta}_{1} X_{i} Y_{i}-\hat{\beta}^{2} X_{i}^{2}\right) \\
& =\frac{1}{N} \sum_{i=1}^{N}\left(Y_{i}^{2}-2 \frac{\sum_{i=1}^{N}\left(Y_{i} X_{i}\right)}{\sum_{i=1}^{N}\left(X_{i}\right)^{2}} X_{i} Y_{i}-\frac{\sum_{i=1}^{N}\left(Y_{i} X_{i}\right)^{2}}{\sum_{i=1}^{N}\left(X_{i}\right)^{2}} X_{i}^{2}\right) \\
& =\frac{1}{N}\left(\sum Y_{i}^{2}-\frac{\sum_{i=1}^{N}\left(Y_{i} X_{i}\right) \sum_{i=1}^{N}\left(Y_{i} X_{i}\right)}{\sum_{i=1}^{N} X_{i}^{2}}\right) \\
& =\frac{1}{N}\left(\sum Y_{i}^{2}-\sum_{i=1}^{N}\left(Y_{i} X_{i}\right)\left(\sum_{i=1}^{N} X_{i}^{2}\right)^{-1} \sum_{i=1}^{N}\left(Y_{i} X_{i}\right)\right)
\end{aligned}
$$

Is hard work!

Matrix notation gives simplicity and generalisation

Matrix notation for $Y_{i}=\beta_{1} X_{i}+\epsilon_{i}$

- Y_{i}, X_{i} are N -dimensional vectors:

$$
Y=\left(\begin{array}{c}
Y_{1} \\
Y_{2} \\
\ldots \\
Y_{N}
\end{array}\right), \quad X=\left(\begin{array}{c}
X_{1} \\
X_{2} \\
\ldots \\
X_{N}
\end{array}\right)
$$

- β is a 1 -dimensional vector in this problem.
$\begin{aligned} & \text { - } X^{\prime} Y=\left(X_{1}, \ldots, X_{N}\right)\left(\begin{array}{c}Y_{1} \\ Y_{2} \\ \ldots \\ Y_{N}\end{array}\right)=\sum_{i=1}^{N} X_{i} Y_{i} \\ & \text { - } X^{\prime} X=\left(X_{1}, \ldots, X_{N}\right)\left(\begin{array}{c}X_{1} \\ X_{2} \\ \ldots \\ X_{N}\end{array}\right)=\sum_{i=1}^{N} X_{i} X_{i}\end{aligned}$
- The data is a matrix $D=(Y, X)$ such that

$$
D=(Y, X)=\left(\begin{array}{cc}
Y_{1} & X_{1} \\
Y_{2} & X_{2} \\
\cdots & \\
Y_{N} & X_{N}
\end{array}\right)
$$

- Then, a convenient matrix is $D^{\prime} D=$:

$$
(Y, X)^{\prime}(Y, X)=\binom{Y^{\prime}}{X^{\prime}}(Y, X)=\left(\begin{array}{cc}
Y^{\prime} Y & Y^{\prime} X \\
X^{\prime} Y & X^{\prime} X
\end{array}\right)
$$

- Features of $D^{\prime} D$: Diagonal are variances and positive. Symmetric about the diagonal.

Matrix notation in the MLE framework

- The model for y_{i} without an intercept is $y_{i}=\beta_{1} X_{i}+\epsilon_{i}$
- Matrix form:

$$
Y=\left(\begin{array}{c}
Y_{1} \\
Y_{2} \\
\ldots \\
Y_{N}
\end{array}\right)=\left(\begin{array}{c}
X_{1} \\
X_{2} \\
\ldots \\
X_{N}
\end{array}\right) \beta+\left(\begin{array}{c}
\epsilon_{1} \\
\epsilon_{2} \\
\cdots \\
\epsilon_{N}
\end{array}\right)
$$

Note: Dimensionality of $Y=X=\epsilon=N \times 1$.

- $Y=X \beta+\epsilon$

Matrix notation in the MLE framework

- $I=I_{Y \mid X}\left(\beta, \sigma^{2}\right)=-\frac{N}{2} \log \left(2 \pi \sigma^{2}\right)-\frac{1}{2 \sigma^{2}}(Y-X \beta)^{\prime}(Y-X \beta)$
- Maximising $/$ is the same as minimising SSE $=(Y-X \beta)^{\prime}(Y-X \beta)$ (with $\left.(Y-X \beta)=\epsilon\right)$.
- As before, the maximum is obtained by setting $\partial I / \partial \beta=0$.
- We can use matrix calculus to find out that:

$$
\hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} Y
$$

- Similarly, we find that:

$$
\hat{\sigma}^{2}=\frac{1}{N}\left(Y^{\prime} Y-Y^{\prime} X\left(X^{\prime} X\right)^{-1} X^{\prime} Y\right)
$$

Note: This notation is convenient, because more exogenous variables will have the same solution form in this matrix notation.

Getting the MLE RSS from the matrix form

- Now if $\hat{\beta}=\left(X^{\prime} X\right)^{-1}\left(X^{\prime} Y\right)$ then $\hat{\beta}^{\prime}=\left(Y^{\prime} X\right)\left(X^{\prime} X\right)^{-1}$ and

$$
\begin{gathered}
\left(\begin{array}{cc}
1 & -Y^{\prime} X\left(X^{\prime} X\right)^{-1} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
Y^{\prime} Y & Y^{\prime} X \\
X^{\prime} Y & X^{\prime} X
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-\left(X^{\prime} X\right)^{-1} X^{\prime} Y & 1
\end{array}\right) \\
=\left(\begin{array}{cc}
Y^{\prime} Y-Y^{\prime} X\left(X^{\prime} X\right)^{-1} X^{\prime} Y & 0 \\
0 & X^{\prime} X
\end{array}\right)
\end{gathered}
$$

- Which is:

$$
\left(\begin{array}{cc}
1 & -\hat{\beta}^{\prime} \\
0 & 1
\end{array}\right) D^{\prime} D\left(\begin{array}{cc}
1 & 0 \\
-\hat{\beta} & 1
\end{array}\right)=\left(\begin{array}{cc}
N \hat{\sigma}^{2} & 0 \\
0 & X^{\prime} X
\end{array}\right)
$$

- Recall for $Y_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}$
- $E\left(\hat{\beta}_{1}\right)=\beta$
- $\operatorname{var}\left(\hat{\beta}_{1}\right)=\sigma_{\epsilon}^{2} /\left(\sum_{i=1}^{N}\left(X_{i}-\bar{X}\right)^{2}\right.$
- Therefore, $\left(\begin{array}{cc}1 & -\hat{\beta}^{\prime} \\ 0 & 1\end{array}\right) D^{\prime} D\left(\begin{array}{cc}1 & 0 \\ -\hat{\beta} & 1\end{array}\right)$ contain the elements to calculate the variance of the MLE $\hat{\beta}$.

Rewriting the model SSE in matrix notation

- $\operatorname{SSE}=(Y-X \beta)^{\prime}(Y-X \beta)$
- With a sample, we will have estimated $\hat{\beta}$.

This gives us an estimated $\hat{Y}=X \widehat{\beta}$.

- SSE can be rewritten using the estimate, \hat{Y} as follows:

$$
\begin{aligned}
\epsilon & =Y-X \beta=Y-X \hat{\beta}+X \hat{\beta}-X \beta \\
& =(Y-X \hat{\beta})+X(\hat{\beta}-\beta) \\
\text { Estimated residual, } \hat{\epsilon} & =Y-X \hat{\beta} \\
\mathrm{SSE}=\epsilon^{\prime} \epsilon & =\hat{\epsilon} \hat{\epsilon}^{\prime}+(\hat{\beta}-\beta)^{\prime} X^{\prime} X(\hat{\beta}-\beta)
\end{aligned}
$$

- $\hat{\epsilon} \hat{\epsilon}^{\prime}$ is the estimated SSE.
- $\hat{\beta}-\beta$ is the error in the estimation of β.
- The SSE will be a minimum when $\hat{\beta}-\beta=0$.
le, when the estimation error is zero and $\hat{\beta}=\beta$

The two variable regression model with intercept

Matrix notation for $Y_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}$

- $Y=X \beta+\epsilon$

$$
Y=\left(\begin{array}{l}
Y_{1} \\
Y_{2} \\
\cdots \\
Y_{N}
\end{array}\right)=\left(\begin{array}{cc}
1 & X_{1} \\
1 & X_{2} \\
\cdots & \\
1 & X_{N}
\end{array}\right)\binom{\beta_{0}}{\beta_{1}}+\left(\begin{array}{c}
\epsilon_{1} \\
\epsilon_{2} \\
\cdots \\
\epsilon_{N}
\end{array}\right)
$$

which gives

$$
\begin{aligned}
Y_{1} & =\beta_{0}+\beta_{1} X_{1}+\epsilon_{1} \\
Y_{2} & =\beta_{0}+\beta_{1} X_{2}+\epsilon_{2} \\
\ldots Y_{N} & =\beta_{0}+\beta_{1} X_{N}+\epsilon_{N}
\end{aligned}
$$

- Since the form of the model remains the same,
$Y=X \beta+\epsilon$, we can use the same form for the esimate $\hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} Y$

Solution $\hat{\beta}$ for the two-variable problem

- $X^{\prime} X$ is: $\left(\begin{array}{cc}\sum_{i=1}^{N} 1^{2} & \sum_{i=1}^{N} X_{i} \\ \sum_{i=1}^{N} X_{i} & \sum_{i=1}^{N} X_{i}^{2}\end{array}\right)$
- $X^{\prime} Y$ is: $\binom{\sum_{i=1}^{N} Y_{i}}{\sum_{i=1}^{N} X_{i} Y_{i}}$
- $\beta=\left(X^{\prime} X\right)^{-1} X^{\prime} Y \rightarrow\left(X^{\prime} X\right) \beta=X^{\prime} Y$

$$
\left(\begin{array}{cc}
N & \sum_{i=1}^{N} X_{i} \\
\sum_{i=1}^{N} X_{i} & \sum_{i=1}^{N} X_{i}^{2}
\end{array}\right)\binom{\beta_{0}}{\beta_{1}}=\binom{\sum_{i=1}^{N} Y_{i}}{\sum_{i=1}^{N} X_{i} Y_{i}}
$$

- This gives the same first derivative equations as before:

$$
\begin{aligned}
N \beta_{0}+\beta_{1} \sum_{i=1}^{N} X_{i} & =\sum_{i=1}^{N} Y_{i} \\
\beta_{0} \sum_{i=1}^{N} X_{i}+\beta_{1} \sum_{i=1}^{N} X_{i}^{2} & =\sum_{i=1}^{N} Y_{i} X_{i}
\end{aligned}
$$

The linear regression model

$Y_{i}=\beta_{0}+X \beta+u_{i}$

- Y_{i} dependent variable
- X_{i} independent variable
- u_{i} error, random variable, i.i.d.
- $\left(\beta_{0}, \beta_{1}, \ldots, \beta_{X_{i}}\right)$ population parameters.
- i subscript, denoting data points
- Simplest: Only one independent variable, x_{1}
(1) $\beta_{0}+\beta_{1} X_{i}$ is the deterministic part of the model. It is the conditional mean of Y_{i} i.e. $E\left(Y_{i} \mid X_{i}\right)=\beta_{0}+\beta_{1} X_{i}$ when $E\left(u_{i} \mid X_{i}\right)=0$
(2) Linear: Linear in parameters, Not variables.
(3) $u_{i} \rightarrow$ difference between Y_{i} and $\left(\beta_{0}+\beta_{1} X_{i}\right)$
$Y_{i}-\beta_{0}-\beta_{1} X_{i}=u_{i}$

Implication of the "population" relation beween Y, X

Interpreting the role of u_{i}

u_{i} is included in the regression to accomodate at least four types of effects:
(1) Omitted variables
(2) Non-linearities in X
(3) Measurement error (in Y, X)
(4) Randomness of behaviour/ effects.

Interpretation of β_{0}, β_{1}

- Interpretation of β_{1} : marginal effect of X_{i} on Y_{i}
- Interpretation of β_{0} : less simple.

It could contain the effect of all the omitted variables and other effects.

- Model error: $Y_{i}-\beta_{0}+\beta_{1} X_{i}=u_{i}$
- We estimate $\hat{\beta}_{0}, \hat{\beta}_{1}$.
- We use this to get \hat{Y}_{i}. This is the estimated value of Y_{i}.
- The estimated error is $\hat{u}_{i}=Y_{i}-\hat{Y}_{i}$.
- Both "population regression" and the "sample regression" have errors.

$$
\begin{aligned}
& u_{i}=Y_{i}-\beta_{0}-\beta_{1} X_{i} \\
& \hat{u}_{i}=Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{i}
\end{aligned}
$$

- Objective of regression approach is the get the "best" $\hat{\beta}_{1}$.
- Given the model, the best that we can get is $\hat{\beta}_{1}=\beta_{1}$. This will give us $\operatorname{SSE}_{\hat{u}_{i}}$ will be the same as $\operatorname{SSE}_{u_{i}}$.

Implication of the regression beween Y, X

Estimation by Ordinary Least Squares

- Method of OLS: choose ($\hat{\beta}_{0}, \hat{\beta}_{1}$) to minimize the sum of squared errors (SSE).

$$
\begin{aligned}
\hat{u}_{i} & =Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{i} \\
\hat{u}_{i 2} & =\left(Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{i}\right)^{2}
\end{aligned}
$$

- ESS $\equiv \sum \hat{u}_{i}^{2}=\sum\left(Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{i}\right)^{2}$

Minimize $\hat{\beta}_{0}, \hat{\beta}_{1}, X_{i} \quad \sum \hat{u}_{i}^{2}=\sum\left(Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{i}\right)^{2}$

The rationale of OLS

Why calculate the SSE?
(1) Strips the direction of errors
(2) Penalises large errors.

$$
\begin{array}{ccc}
(-1,2,+1,-2) & \longrightarrow & (-1,-1,-1,3) \\
E S S=10 & E S S=12
\end{array}
$$

- This approach gives us what is called the normal equations:

$$
\begin{aligned}
E S S & =\sum\left(Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{i}\right)^{2} \\
\frac{\partial E S S}{\partial \hat{\beta}_{0}} & =\sum 2\left(Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{i}\right)(-1) \\
\frac{\partial E S S}{\partial \hat{\beta}_{1}} & =\sum 2\left(Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{i}\right)\left(-X_{i}\right)
\end{aligned}
$$

- Set these to zero (just as in the case of the MLE):

$$
\begin{aligned}
\sum 2\left(Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{i}\right)(-1) & =0 \\
\sum 2\left(Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{i}\right)\left(-X_{i}\right) & =0
\end{aligned}
$$

- Two equations in two unknowns $\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)$. Solve them

$$
\begin{aligned}
& \sum\left(Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{i}\right)=0 \\
\Rightarrow & \left.\sum Y_{i}-N \hat{\beta}_{0}-\hat{\beta}_{1} \sum X_{i}\right)=0 \\
\Rightarrow & N \hat{\beta}_{0}=\sum Y_{i}-\hat{\beta}_{1} \sum X_{i} \\
\Rightarrow & \hat{\beta}_{0}=\frac{1}{N} \sum Y_{i}-\hat{\beta}_{1} \frac{1}{N} \sum X_{i}
\end{aligned}
$$

$\hat{\beta}_{0}=\bar{Y}-\hat{\beta}_{1} \bar{X}$
Sample regression line passes through mean.

$$
\begin{aligned}
\Rightarrow \quad & \sum\left[Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{i}\right]\left[X_{i}\right]=0 \\
& \text { or, } \sum Y_{i} X_{i}-\hat{\beta}_{0} \sum x_{i}-\hat{\beta}_{1} \sum x_{i}^{2}=0 \\
& \text { or, } \sum Y_{i} X_{i}=\hat{\beta}_{0} \sum X_{i}+\hat{\beta}_{1} \sum X_{i}^{2} \\
\quad \text { or, } & \sum Y_{i} X_{i}=\left[\frac{1}{N} \sum Y_{i}-\hat{\beta}_{1} \frac{1}{N} \sum x_{i}\right] \sum x_{i}+\hat{\beta}_{1} \sum X_{i}^{2} \\
\quad & \text { or, } \sum Y_{i} X_{i}=\frac{1}{N} \sum Y_{i} \sum X_{i}-\hat{\beta}_{1} \frac{1}{N} \sum x_{i} \sum x_{i}+\hat{\beta}_{1} \sum X_{i}^{2} \\
& \text { or, } \sum Y_{i} X_{i}=\frac{1}{N} \sum Y_{i} \sum X_{i}+\hat{\beta}_{1}\left[\sum X_{i}^{2}-\frac{1}{N}\left(\sum x_{i}\right)^{2}\right] \\
\hat{\beta}_{1}= & \frac{\sum Y_{i} X_{i}-\frac{1}{N} \sum Y_{i} \sum X_{i}}{\sum X_{i}^{2}-\frac{1}{N}\left(\sum X_{i}\right)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \sum\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)=\sum\left(x_{i} Y_{i}-X_{i} \bar{Y}-\bar{X} Y_{i}+\bar{X} \bar{Y}\right) \\
&=\sum x_{i} Y_{i}-\bar{Y} \sum x_{i}-\bar{X} \sum Y_{i}+\sum \bar{X} \bar{Y} \\
&=\sum x_{i} Y_{i}-N \bar{X} \bar{Y} \\
&=\sum x_{i} Y_{i}-\frac{1}{N} \sum x_{i} \sum Y_{i} \\
& \text { Also } \sum\left(X_{i}-\bar{X}\right)\left(X_{i}-\bar{X}\right)=\sum X_{i}^{2}-\frac{1}{N}\left(\sum X_{i}\right)^{2} \\
& \text { Therefore } \quad \hat{\beta}_{1}=\frac{S_{X Y}}{S_{X X}}
\end{aligned}
$$

- Alternatively:

$$
\hat{\beta}_{1}=\frac{\sum x_{i} y_{i}}{\sum x_{i}^{2}}=\frac{\sum\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum\left(X_{i}-\bar{X}\right)^{2}}
$$

- ($\left.\hat{\beta}_{0}, \hat{\beta}_{1}\right)$ sample estimates of the population parameters $\left(\beta_{0}, \beta_{1}\right)$
$\hat{\beta}_{0}+\hat{\beta}_{1} X \longrightarrow$ estimated line/ sample regression line.
- $\hat{\beta}_{1}$ cannot be computed if $\sum\left(X_{i}-\bar{X}\right)^{2}=0$ i.e. all the X_{i} 's are same. This leads to an important assumption that cannot be relaxed (unless $\beta_{0}=0$)

Sample variance $-\widehat{\operatorname{var}(X)}=\frac{1}{N-1} \sum\left(X_{i}-\bar{X}\right)^{2} \neq 0$

