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Model Y; = 61X + ¢;

@ Consider a two variable, gaussian distribution model
without an intercept:

e Independence: Y;, X; are independent across i
e Normality conditional on X;: Y; ~ N[31X;, 0?]
e X; is exogenous

/= —g log (27r02) — 217 Zf\;(yl - 51Xi)2
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MLE 34

o =L (Yi— B1X)Xi
° 51 = 21:1(W)Q)/ Zi:1()(i)(i)
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MLE 52

© 3 =~ + zs i (Vi - iX)F =0
1 .
6% = NZ()/,-—ﬁ1)(,-)2
i=1
1 N
= NZ( YP - 261 Y; - B2XP)
u _pim(YiX) SEYiX)? s
= U= T Xy, =1 T 2
NZ 2, 1 (X)? Y (X)?
_ 2 SR (YiX) SN (ViXi)
= N(ZY,- S X2 )
1 N N N
= OB (X XA Y (VX))
i=1 i=1 i=1
Is hard work!
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Matrix notation gives simplicity and
generalisation
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Matrix notation for Y; = 51 X; + ¢;

@ Y;, X; are N-dimensional vectors:

Y; Xi

y_| T X — X2

Yn XN

@ [ is a 1-dimensional vector in this problem.
Yi
Y.

o XY =(Xi... Xn) | | =M X
Yn
Xi
X

o X'X=(X,....Xn) | 2| =Xk XX
XN
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The Data Matrix

@ The data is a matrix D = (Y, X) such that

Y, X
D-(v.x)=| T2 %
Yn Xn

@ Then, a convenient matrix is D'D =:

(Y, X)(Y,X) = < ;: ) (Y, X) = < ;x ;:§ >

@ Features of D'D: Diagonal are variances and positive.
Symmetric about the diagonal.
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Matrix notation in the MLE framework

@ The model for y; without an intercept is y; = B1X; + ¢;
@ Matrix form:

Y1 X1 €1
v_| Y _ Xo g+ |
Yn Xy EN

Note: Dimensionality of Y = X =e =N x 1.
@ Y=X3+¢
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Matrix notation in the MLE framework

® | =lyx(8,0%) = ~Flog (210%) — 55(Y = XB)' (Y — XB)
@ Maximising / is the same as minimising SSE

= (Y = XB) (Y — XB) (with (Y — X3) = ¢).
@ As before, the maximum is obtained by setting 9//93 = 0.
@ We can use matrix calculus to find out that:

B=(X'X)"'X'Y
@ Similarly, we find that:

62 = 1N(Y’Y —Y'X(X'X)TTX'Y)

Note: This notation is convenient, because more
exogenous variables will have the same solution form in
this matrix notation.
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Getting the MLE RSS from the matrix form

@ Now if 3= (X'X)~"(X'Y) then ' = (Y'X)(X'X)~" and

1 —Y'X(X'X)! Y'Y Y'X 1 0
0 1 XY XX —(X'X)'X'Y A
_(YY=YXXX)TIX'Y 0
- 0 X' X
@ Which is:
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Recap: on se of /3

@ Recall for Y; = g + B1X; + €
° E(3)=2
o var(fBy) = o2/(X N4 (X — X)?

1 - \pp( 1.0
c)Therefore,(0 ] )DD<—B ]

gontain the elements to calculate the variance of the MLE

A.
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Rewriting the model SSE in matrix notation

@ SSE = (Y — XpB) (Y — Xp)
@ With a sample, we will have estimated /3.
This gives us an estimated Y = X5.

@ SSE can be rewritten using the estimate, Y as follows:

e = Y-XB=Y-XB+X3-Xp
= (Y- XB)+X(-p)
Estimated residual, ¢ = Y — XJ3
SSE=¢e = &+ (3 BYX'X(G - 1)

@ é¢' is the estimated SSE.
@ 3 — fis the error in the estimation of 3.

@ The SSE will be a minimum when 3 — 3 = 0.
le, when the estimation error is zero and 5 =
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The two variable regression model with
intercept
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Matrix notation for Y; = Gy + 51 X + ¢;

Yio = Bo+ 51X +e
Yo = fo+BiXo+e
..YN = ,30+ﬂ1XN+6N
@ Since the form of the model remains the same,

Y = X3 + ¢, we can use the same form for the esimate
f=(XX)"'X'Y

Susan Thomas Matrix algebra and the linear regression model



Solution 3 for the two-variable problem

N
Zi:1 )(/ Zf\i1 )(12

N
: ADRZ
° X/YISZ 21:1 I
( S XY )

0 3= (X'X)'X'Y = (XX)B=XY

N Y X (m)z > Y
SEoX S x2 )\ B SN XY

@ This gives the same first derivative equations as before:

N N
NBo+B1 Y Xi = DY
i=

N Il\71 N
Bod XitBiY Xp = > ViXi
i=1 i=1 i=1
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The linear regression model
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Yi = B0+ X8+ u;

@ Y, dependent variable

@ X; independent variable

@ u; error, random variable, i.i.d.

@ (Bo. 1, -, Px) population parameters.
@ / subscript, denoting data points

@ Simplest: Only one independent variable, x;

@ 5o + 31X is the deterministic part of the model.
It is the conditional mean of Y;i.e. E(Y;|X;) = Bo + 51 Xi
when E(uj|Xi) =0

@ Linear: Linear in parameters, Not variables.

© u; — difference between Y; and (5, + £51.X)
Yi— Bo — 1 Xi = U
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Implication of the “population” relation beween Y, X

Y
Y1 | —
b=t
x ,;;"
. T
-7 X

Y_1=Dbeta_0 + beta_1 X_1
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Interpreting the role of u;

uj is included in the regression to accomodate at least four
types of effects:

@ Omitted variables

@ Non-linearities in X

© Measurement error (inY, X)

© Randomness of behaviour/ effects.
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Interpretation of 3y, 51

@ Interpretation of 84: marginal effect of X; on Y;

@ Interpretation of 3y: less simple.
It could contain the effect of all the omitted variables and
other effects.

@ Model error: Y; — By + 31 X; = u;
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From population to sample

@ We estimate 3y, 1.

@ We use this to get ;.
This is the estimated value of Y;.

@ The estimated erroris & = Y; — Y.
@ Both “population regression” and the “sample regression”
have errors.
up=Yj—fo—B1X
by =Y;— Bo— B1 Xi
@ Objective of regression approach is the get the “best” j3;.

@ Given the model, the best that we can get is By = Bs.
This will give us SSE;;, will be the same as SSE,;.
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Implication of the regression beween Y, X

Y1

1 =Dbeta_0 + beta_1 X_1
hat beta_1

I
I
I
I
I
I
I
I
I
I
Yhat_1 = hat beta_0 + hat beta_1 X_i
I
I
I
I
I
1

X1 X
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Estimation by Ordinary Least Squares

@ Method of OLS: choose (3, 31) to minimize the sum of
squared errors (SSE).

U = Yi—PBo—BiX
U = (Yi—Bo— P1X)?
© ESS=Y 12 =3 (Yi—fBo— B X)?

Minimize 3o, 31, X; Z EI,-Z = Z(Y, — By — B1Xi)2
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The rationale of OLS

Why calculate the SSE?
@ Strips the direction of errors
© Penalises large errors.

(-1,2,+1,-2) — (-1,—-1,-1,3)
ESS =10 ESS =12
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The OLS solution

@ This approach gives us what is called the normal
equations:

ESS = ) (Yi—fo— 51X)?

E. A N
aag)s = Y 2(Y;—Bo— B X)(-1)
0ESS A oA

B = > 2(Yi— Bo — B X)(— X))

@ Set these to zero (just as in the case of the MLE):

> 2(Yi— o — BiX)(=1) = 0
> 2(Yi—Bo—BX)(=X) = 0
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The OLS solution

@ Two equations in two unknowns(f, 31). Solve them
- > (Yi—Bo—BiX) =0
= > Yi—NB— B> X)=0
= NG =) Yi—B1Y X
~ 1 A1
= fo=py 2 Yi-Piyg X

b=V - X
Sample regression line passes through mean.
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The OLS solution

= Y [Yi-Be—Bix| Xl =0
or, > YiXi—Poy Xi—Hiy XE=0
or, > YiXi=05oy Xi+5) X
ZY,»c:FzY-@1;2x-}zx-+a12x-2
or, ZY,-X,-_ SV X - B ZXZX+B1ZX
o, Y ViXi= LS Y Xy [ZX,?—NZX,- d

PP IRL s DI
TR - H(E X
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The OLS solution

YMXi-X)(Yi—Y) = D (XYVi— XY - XY+ XY)
- Z)(,»/,_VZ)Q_)‘(Z\/,+Z)‘(V

= > XYi—NXY

D AR 3D DA
Also ) (X — X)( ZXQ——ZX

A S
By =2X

Therefore
Sxx
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The OLS solution

@ Alternatively:

B = XX _ XX = X)(Yi = Y)
> xF (X = X)2
@ ($, 31) sample estimates of the population parameters
(B0, B1)

Go + 1 X — estimated line/ sample regression line.

@ (34 cannot be computed if S°(X; — X)2 = 0 i.e. all the X;’s
are same. This leads to an important assumption that
cannot be relaxed (unless (55 = 0)

—

Sample variance — var(X) = 5 3 (X; — X)2 £ 0
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