Properties of linear regression model estimators

Susan Thomas
IGIDR, Bombay

2 October, 2008
The linear regression model is one of the form:

\[Y_i = \beta_0 + \beta_1 X_{1,i} + \beta_2 X_{2,i} + \ldots + \beta_J X_{J,i} + u_i \]

Or, \(Y = X\beta + U \)
where \(\beta = (\beta_0, \beta_1, \beta_2, \ldots, \beta_J)' \)

The linear regression model estimates are those which minimise the sum of squared errors:

\[\sum \epsilon_i = \sum (Y_i - \beta_0 - \ldots - \beta_J X_{J,i}) = 0 \]
\[\min_{\beta, \sigma^2} \sum (Y_i - \beta_0 - \beta_1 X_{1,i} - \ldots - \beta_J X_{J,i})^2 = \min_{\beta, \sigma^2} \sum u_i^2 \]

Jargon: The model is referred to as the “Data Generating Process” (DGP).
Recap

- For a simple one-exogenous variable model,
 \[Y_i = \beta_0 + \beta_1 X_{1,i} + u_i \]

- \(\beta_0 \) is the intercept on the “regression line” and \(\beta_1 \) is the slope.

- The above equation is called the “population regression line”.

- After estimation, we have \(Y_i = \hat{\beta}_0 + \hat{\beta}_1 X_{1,i} + u_i \)
 which is called the “estimated/sample regression line”

- \(\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X} \)
 the “regression line” passes through the mean of the dataset.

- \(\hat{\beta}_1 = \frac{S_{xy}}{S_{xx}} \)
 where \(S_{xy} \) is the sample covariance and \(S_{xx} \) is the sample variance of the exogenous data \(X \).
Properties of linear regression estimators
Questions after the regression

\((\hat{\beta}_0, \hat{\beta}_1)\) are the estimated parameters that provide the “best fit” to the data.

But we also ask other questions:

1. What are their sample statistical properties?
2. What reliability/precision they have?
3. How can we use the estimates to test a hypothesis?
4. How can we use the estimates when forecasting the \(Y_i\)?

These are questions about how a sample estimate can be used to capture knowledge about the population estimate.
Sample statistical features will be the distribution of the estimator.

This distribution will have a mean and a variance, which in turn, leads to the following properties of estimators:

1. **Unbiasedness:** \(E(\hat{\beta}) = \beta \)
2. **Consistency:** As \(N \to \infty \), \(\hat{\beta} = \beta \), \(\text{var}(\hat{\beta}) \to 0 \).
3. **Efficiency:** \(E(\hat{\beta})^2 \) is minimum among all other estimators.
Each estimated value may differ from β_0, β_1, but their expected/average value would be equal to β_0, β_1.

Thus, if these estimators are “unbiased”, then

$$E(\hat{\beta}_0) = \beta_0$$
$$E(\hat{\beta}_1) = \beta_1$$
Assumptions needed for unbiasedness of β_0, β_1

- $E(u_i | X_i) = 0$
 \[\Rightarrow E(u_i) = 0 \]
 (by law of iterated expectations)

- X_i’s are fixed and non-stochastic.
 \[\Rightarrow \text{Cov}(X_i, u_i) = 0 \]

- Working this out:
 \[
 \text{Cov}(X_i, u_i) = E[(X_i - E(X_i))(u_i - E(u_i))] \\
 = E(X_i u_i) - E(X_i)E(u_i) \\
 = X_i E(u_i) - X_i E(u_i) \\
 = 0
 \]
Proof that $E(\hat{\beta_1}) = \beta_1$

- $\hat{\beta}_1 = \frac{S_{XY}}{S_{XX}}$
- S_{XY} works out to be:

$$
\begin{align*}
S_{XY} &= \sum x_{1,i} y_i - \frac{1}{N} \sum x_{1,i} \sum y_i \\
&= \sum x_{1,i} [\beta_0 + \beta_1 x_{1,i} + u_i] - \frac{1}{N} \sum x_i \sum (\beta_0 + \beta_1 x_{1,i} + u_i) \\
&= \beta_0 \sum x_{1,i} + \beta_1 \sum x_{1,i}^2 + \sum x_{1,i} u_i \\
&\quad - \frac{1}{N} \sum x_{1,i} \left[N \beta_0 + \beta_1 \sum x_{1,i} + \sum u_i \right] \\
&= \beta_0 \sum x_{1,i} + \beta_1 \sum x_{1,i}^2 + \sum x_{1,i} u_i \\
&\quad - \beta_0 \sum x_{1,i} + \beta_1 \frac{1}{N} \left[\sum x_{1,i} \right]^2 - \frac{1}{N} \sum x_{1,i} \sum u_i \\
&= \beta_1 \left[\sum x_{1,i}^2 - \frac{1}{N} \left[\sum x_{1,i} \right]^2 \right] + \left[\sum x_{1,i} u_i - \frac{1}{N} \sum x_{1,i} \sum u_i \right] \\
\end{align*}
$$

- So,

$$S_{XY} = \beta_1 S_{XX} + S_{Xu}$$
Proof that $E(\hat{\beta}_1) = \beta_1$

Thus:

\[
\hat{\beta}_1 = \frac{S_{XY}}{S_{XX}} = \frac{\beta S_{XX} + S_{Xu}}{S_{XX}} = \beta \frac{S_{XX}}{S_{XX}} + \frac{S_{Xu}}{S_{XX}}
\]

\[
\hat{\beta}_1 = \beta_1 + \frac{S_{Xu}}{S_{XX}} E(\hat{\beta}_1) = \beta_1 + E\left(\frac{S_{Xu}}{S_{XX}} | X\right)
\]

\[
= \beta_1 + \frac{1}{S_{XX}} \cdot E(S_{Xu} | X)
\]

Or, $E(\hat{\beta}_1) = \beta_1 + \frac{1}{S_{XX}} E(S_{Xu} | X)$
Proof that $E(\hat{\beta}_1) = \beta_1$

Then,

$$E(S_{Xu}|X) = E\left[\sum (X_{1,i} - \bar{X}_1)(u_i - \bar{u})\right]$$

$$= \sum E(X_{1,i} - \bar{X}_1)(u_i - \bar{u})$$

$$= \sum (X_{1,i} - \bar{X}_1)E(u_i - \bar{u})$$

$$= 0$$

Therefore $E(\hat{\beta}_1|X) = \beta_1 \rightarrow \text{Unbiased}$

By law of iterated expectation $E(\hat{\beta}_1) = \beta_1$.
Show that $E(\hat{\beta}_0) = \beta_0$
Property 2: Consistency

- If we have two estimators, $\hat{\beta}_{0,n}, \hat{\beta}_{1,n}$

\[
(\hat{\beta}_{0,n=1}, \hat{\beta}_{1,n=1}) \cdots (\hat{\beta}_{0,n=m}, \hat{\beta}_{1,n=m})
\]

- As $(n = m)$ becomes large, $\hat{\beta}_{0,n=m}, \hat{\beta}_{1,n=m}$ converge to the true parameters, β_0, β_1.
\(\hat{\beta}_0, \hat{\beta}_1 \) are consistent

- We know that:
 \[
 \hat{\beta}_1 = \beta_1 + \frac{S_{Xu}}{S_{XX}} = \beta_1 + \frac{S_{Xu}/N}{S_{XX}/N}
 \]

- As \(N \to \beta_0 \),
 \[S_{Xu} \to \text{Cov}(X, u) \]
 and by the Law of large numbers \(S_{Xu} = 0 \)

- As \(N \to \infty \),
 \[S_{XX} \to \text{Var}(X) = \sigma^2 X \]

- Therefore, \(\text{Plim} \hat{\beta} = \beta \)
Assumptions on the error, u_i.

1. **Assumption of homoskedasticity:** $u_i \sim \text{i.i.d}$ in conditional variance σ^2

\[
V(u_i|X_{1,i}) = E(u_i^2|X_{1,i}) = \sigma^2 \quad \forall i
\]

2. **Assumption of serial independence.**

\[
\text{CovE}(u_i, u_j|X_{1,i}) = E(u_i u_j|X_{1,i}) = 0 \quad i \neq j
\]
Precision of estimators and model
Step 1: How precisely are the estimators observed?

- The “precision of estimators” is captured by the estimator’s variance.

\[
\text{var}(\hat{\beta}_1) = \text{var}\left[\beta_1 + \frac{S_{Xu}}{S_{XX}}\right] \\
= 0 + \frac{1}{[S_{XX}]^2} \text{var}(S_{Xu})
\]

But \(\text{var}(S_{Xu}) = \text{var}\left[\sum(X_{1,i} - \bar{X})u_i\right] \)
\[
= \sum \text{var}(X_{1,i} - \bar{X})u_i \quad \text{by serial independence} \\
= \sum (X_i - \bar{X})^2 \text{var}(u_i) \\
= \sigma_u^2 \sum (X_{1,i} - \bar{X})^2 \\
= \sigma_u^2 S_{XX}
\]
Variance of OLS estimators

The variance of the estimators are:

\[\text{var}(\hat{\beta}_1) = \frac{\sigma_u^2}{S_{XX}} \]

\[\text{var}(\hat{\beta}_0) = \frac{\sum X_i^2 \cdot \sigma_u^2}{NS_{XX}} \]

\[\text{cov}(\hat{\beta}_0, \hat{\beta}_1) = -\frac{\bar{X}_1 \sigma_u^2}{S_{XX}} \]

Where \(S_{XX} = \sum (X_{1,i} - \bar{X}_1)^2 \)

The higher the \(S_{XX} \) (more variation in \(X \)) and larger the sample size, \(N \), the lower is the se of the estimated parameters.

With larger samples and higher variability in \(X \), we estimate \(\beta \) more precisely.
The above are the “true” or population variances, which is unknown because σ^2_u is unknown.

We estimate σ^2_u as:

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_{1,i}$$

$$\Rightarrow \hat{u}_i = Y_i - \hat{Y}_i$$

$$\Rightarrow \hat{u}_i = Y_i - \hat{\beta}_0 - \hat{\beta}_0 X_{1,i} \quad \text{estimate errors}$$

$$\tilde{\sigma}^2_u = \frac{\sum \hat{u}_i^2}{N} \quad \text{Law of large numbers}$$

$$\Leftarrow \tilde{\sigma}^2_u \rightarrow \sigma^2_u$$

But the above is biased. An unbiased estimator is:

$$\hat{\sigma}^2_u = \frac{\sum \hat{u}_i^2}{(N - 2)}$$

$(N - 2)$, not N, because there are two parameters to estimate: (β_0, β_1), using which we got \hat{u}_i. $N > 2$ for the σ^2_u to be positive.
Using σ^2_u to calculate $\text{var}(\beta)$

- \hat{u}_i satisfy $\hat{\sigma} = \sqrt{\hat{\sigma}^2}$ is
 - Standard error of the disturbances, or
 - Standard error of regression

- The estimated variances are

$$
\hat{V}(\hat{\beta}_1) = s^2_{\hat{\beta}_1} = \hat{\sigma}^2_u / S_{XX}
$$

$$
\hat{V}(\hat{\beta}_0) = s^2_{\hat{\beta}_0} = \hat{\sigma}^2_u \sum X^2_{1,i} / (NS_{XX})
$$

$$
\widehat{\text{Cov}}(\hat{\beta}_0, \hat{\beta}_1) = s_{(\hat{\beta}_0 \hat{\beta}_1)} = -\bar{X}_1 \hat{\sigma}^2_u / S_{XX}
$$

- The square root of the estimated variances above, are called the “standard errors” of the regression coefficients.
Overall Goodness of F_{it}: many straight lines can pass through the observation parirs. The OLS fitted line is the “best”.

Yet it is imprecise: it does not pass through all the points, because of the errors u_i.

A quantification of how “good” is the fit of the relationship is captured by the R^2 measure.
Goodness of Fit for $Y_i = \beta_0 + \epsilon_i$

- If we knew only Y_i's then our best predictor would be \bar{Y}. Then error would be $(Y_i - \bar{Y})$.
- If we square and sum all the errors we get
 $$\sum (Y_i - \bar{Y})^2 = \text{TSS, Total sum of squared errors}$$
- Sample standard deviation:
 $$\hat{\sigma}_Y = \sqrt{\frac{\sum (Y_i - \bar{Y})^2}{N - 1}}$$
Goodness of Fit for $Y_i = \beta_0 + \beta_1 X_{1,i} + u_i$

If we know $X_{1,i}, \hat{\beta}_0, \hat{\beta}_1$, and the linear relation between Y_i and $X_{1,i}$, we can compute

\[
\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_{1,i}
\]

\[\Rightarrow \hat{u}_i = Y_i - \hat{Y}_i, \text{Estimated errors}\]

\[\sum \hat{u}_i^2 = \text{ESS, Error sum of squares}\]

\[\hat{\sigma}_u = \sqrt{\frac{\text{ESS}}{(N - 2)}}, \text{Standard deviation, dispersion of errors}\]
$Y_i = \beta_0 + \epsilon_i$ vs $Y_i = \beta_0 + \beta_1 X_{1,i} + u_i$

- Compare $\hat{\sigma}_u$ to $\hat{\sigma}_\epsilon$.
- Large reduction means good fitted relation. But $\hat{\sigma}_u$ to $\hat{\sigma}_\epsilon$ depend on unit of measurement.

$$\sum(Y_i - \bar{Y})^2 = \sum(\hat{Y}_i - \bar{Y})^2 + \sum(Y_i - \hat{Y})^2$$

$$TSS = RSS + ESS$$

- Dividing both sides by TSS:

$$R^2 = 1 - \frac{ESS}{TSS}$$

- Thus, $Y_i - \bar{Y} = (\hat{Y}_i - \bar{Y}) + (Y_i - \hat{Y})$

 The same holds true for sum of square also: $TSS = ESS + RSS$, or $R^2 = 1 - \frac{ESS}{TSS}$

- $R^2 \to \text{“coefficient of multiple determination”}$.

 Jargon: In single variable case the word “multiple” does not apply. R^2 is instead called “coefficient of determination”.

Susan Thomas

Properties of linear regression model estimators
Characteristics of R^2

- Better the fit, the close are the scatter points to the fitted line.
 Then, the lower would be $\sum \hat{u}_i^2$, or ESS, and greater would be RSS.
 Thus R^2 is a measure of goodness of fit.
- ESS \longrightarrow Unexplained variation.
- RSS \longrightarrow Explained variation.
- Thus R^2 is the percentage of total variation explained by model.
- Low R^2 means that a lot of variation in Y_i is unexplained by model.
It is obvious that $0 \leq R^2 \leq 1$

We know that

\[
\frac{TSS}{TSS} = \frac{RSS + ESS}{TSS} = \frac{RSS}{TSS} + \frac{ESS}{TSS}
\]

\[
1 = R^2 + \frac{ESS}{TSS} \quad \rightarrow \quad 1 - \frac{ESS}{TSS}
\]

Since $0 \leq \frac{ESS}{TSS} \leq 1 \quad \rightarrow \quad 0 \leq R^2 \leq 1$

How to decide if R^2 is high or low?

\Rightarrow No unique answer
Show that $E(\hat{Y}_i) = \bar{Y}$.

The OLS model

Under the assumptions of:

1. \(Y = X\beta + u \) (linear in parameters)
2. \(E(\hat{\beta}) = \beta \) (unbiased)
3. \(E(u|X) = 0 \)
4. \(X \) are fixed for \(i \), \(\text{Cov}(X_i, u_i) = 0 \)
5. \(u_i \sim iid \), such that \(\sigma_i^2 = \sigma^2 \) (homoskedasticity)
6. \(\text{Cov}(u_i, u_j|X_i) = 0 \), (serial independence)

\[\beta = (X'X)^{-1}(X'Y) \]

These parameters are called the *Ordinary Least Squares* or “OLS” parameters.

Note: no distribution assumption on \(u_i \).
The parameters minimising the SSE ($\sum u_i^2$) are most efficient among other linear, unbiased, estimators.

Jargon: OLS parameters are \textit{BLUE}: Best Linear Unbiased Estimators.

Key to note here: it’s only “best” amongst linear and unbiased estimators.
\[\hat{\beta}_1 = \frac{S_{XY}}{S_{XX}} \]

\[
S_{XY} = \sum X_i Y_i - \frac{1}{N} \sum X_i \sum Y_i
= \sum X_i Y_i - \bar{X} \sum Y_i
= \sum (X_i - \bar{X}) Y_i
\]

Rewrite \[\hat{\beta}_1 = \frac{\sum (X_i - \bar{X}) Y_i}{S_{XX}} = \sum \frac{(X_i - \bar{X})}{S_{XX}} \cdot Y_i\]

Now, \[Y_i = \beta_0 + \beta_1 X_i + u_i \]

With independence ⇒ \(\text{var}(Y) = \text{var}(u_i) = \sigma^2 \)

Therefore, \(\text{var}(\hat{\beta}_1) = \sum \omega_i^2 \text{var}(Y_i) = \sigma^2 \sum \omega_i^2 \)
Compare with alternative linear unbiased estimators

\[\tilde{\beta}_1 = \sum a_i Y_i \]

\[E(\tilde{\beta}_1) = \sum a_i E(Y_i) \]
\[E(\tilde{\beta}_1) = \sum a_i [\beta_0 + \beta_1 X_i] \]
\[\tilde{\beta}_1 = \sum a_i Y_i \]

Set \(a_i = \omega_i + d_i \)

Then \(\tilde{\beta}_1 = \sum (\omega_i + d_i) Y_i \)

\[\tilde{\beta} = \sum \omega_i Y_i + \sum d_i Y_i = \tilde{\beta}_1 + \sum d_i Y_i \]
\[E(\tilde{\beta}_1) = \beta_1 + \sum d_i E(Y_i) \]
\[= \beta_1 + \sum d_i [\beta_0 + \beta_1 X_i] \]
\[E(\tilde{\beta})_1 = \beta_1 + \beta_0 \sum d_i + \beta_1 \sum d_i X_i \]

For unbiasedness, we need:

\[\sum d_i = 0, \text{ and } \sum d_i X_i = 0 \]
Checking for efficiency of $\tilde{\beta}_1$

- What is the $\text{var}(\tilde{\beta}_1)$

\[
\text{var}(\tilde{\beta}_1) = \sum (\omega_i + d_i)^2 \sigma^2
\]

\[
= \sigma^2 \sum (\omega_i^2 + d_i^2 + 2\omega_id_i)
\]

Therefore, $\text{var}(\tilde{\beta}) = \sigma^2 \sum \omega_i^2 + \sigma^2 \sum d_i^2 + 2\sigma^2 \sum \omega_id_i$

- But we know that:

\[
\sum \omega_i d_i = \sum \left(\frac{X_i - \bar{X}}{S_{XX}} \right) d_i
\]

\[
= \frac{\sum X_i d_i - \bar{X} \sum d_i}{S_{XX}} = 0
\]

Which means:

\[
\text{var}(\tilde{\beta}) = \sigma^2 \sum \omega_i^2 + \sigma^2 \sum d_i^2 + 2\sigma^2 \sum \omega_i d_i
\]

\[
= \sigma^2 (\sum \omega_i^2 + \sum d_i^2) > \sigma^2 \sum \omega_i^2
\]

Therefore, $\hat{\beta}_1$ is BLUE.