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Recap

The linear regression model is one of the form:

Yi = β0 + β1X1,i + β2X2,i + . . .+ βJXJ,i + ui

Or, Y = Xβ + U
where β = (β0, β1, β2, . . . , βJ)′

The linear regression model estimates are those which
minimise the sum of squared errors:X

εi =
X

(Yi − β0 − . . .− βJXJ,i ) = 0

minβ,σ2

X
(Yi − β0 − β1X1,i − . . .− βJXJ,i )

2 = minβ,σ2

X
u2

i

Jargon: The model is referred to as the “Data Generating
Process” (DGP).
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Recap

For a simple one-exogenous variable model,

Yi = β0 + β1X1,i + ui

β0 is the intercept on the “regression line” and β1 is the
slope.
The above equation is called the “population regression
line”.
After estimation, we have Yi = β̂0 + β̂1X1,i + ui
which is called the “estimated/sample regression line”
β̂0 = Ȳ − β̂1X̄
the “regression line” passes through the mean of the
dataset.
β̂1 = Sxy/Sxx
where Sxy is the sample covariance and Sxx is the sample
variance of the exogenous data X .
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Properties of linear regression estimators
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Questions after the regression

(β̂0, β̂1) are the estimated parameters that provide the
“best fit” to the data.
But we also ask other questions:

1 What are their sample statistical properties?
2 What reliability/ precision they have?
3 How can we use the estimates to test a hypothesis?
4 How can we use the estimates when forecasting the Yi?

These are questions about how a sample estimate can be
used to capture knowledge about the population estimate.
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Sample properties of regression estimators

Sample statistical features will be the distribution of the
estimator.
This distribution will have a mean and a variance, which in
turn, leads to the following properties of estimators:

1 Unbiasedness: E(β̂) = β
2 Consistency: As N →∞, β̂ = β, var(β̂)→ 0.
3 Efficiency: E(β̂)2 is minimum among all other estimators
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Testing unbiasedness: Mean of (β0, β1)

Each estimated value may differ from β0, β1, but their
expected/ average value would be equal to β0, β1.
Thus, if these estimators are “unbiased”, then

E(β̂0) = β0

E(β̂1) = β1
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Assumptions needed for unbiasedness of β0, β1

E(ui |Xi) = 0
⇒ E(ui) = 0

(by law of iterated expectations)
Xi ’s are fixed and non- stochastic.

⇒ Cov(Xi ,ui) = 0

Working this out:

Cov(Xi ,ui) = E [(Xi − E(Xi))(ui − E(ui))]

= E(Xiui)− E(Xi)E(ui)

= XiE(ui)− E(Xi)E(ui)

= XiE(ui)− XiE(ui)

= 0
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Proof that E(β̂1) = β1

β̂1 = SXY
SXX

SXY works out to be:

=
X

X1,iYi −
1
N

X
X1,i

X
Yi

=
X

X1,i [β0 + β1X1,i + ui ]−
1
N

X
Xi

X
(β0 + β1X1,i + ui )

= β0

X
X1,i + β1

X
X 2

1,i +
X

X1,iui

− 1
N

X
X1,i

h
Nβ0 + β1

X
X1,i +

X
ui

i
= 6 β0

X
X1,i + β1

X
X 2

1,i +
X

X1,iui

− 6 β0

X
X1,i + β1

1
N

hX
X1,i

i2
− 1

N

X
X1,i

X
ui

= β1

»X
X 2

1,i −
1
N

hX
X1,i

i2
–

+

»X
X1,iui −

1
N

X
X1,i

X
ui

–
So,

SXY = β1SXX + SXu
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Proof that E(β̂1) = β1

Thus:

β̂1 =
SXY

SXX

=
βSXX + SXu

SXX
= β

6 SXX

6 SXX
+

SXu

SXX

β̂1 = β1 +
SXu

SXX
E(β̂1) = β1 + E

(
SXu

SXX
|X
)

= β1 +
1

SXX
. E(SXu|X )

Or, E(β̂1) = β1 +
1

SXX
E(SXu|X )
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Proof that E(β̂1) = β1

Then,

E(SXu|X ) = E
[∑

(X1,i − X̄1)(ui − ū)
]

=
∑

E(X1,i − X̄1)(ui − ū)

=
∑

(X1,i − X̄1)E(ui − ū)

= 0

Therefore E(β̂1|X ) = β1 → Unbiased

By law of iterated expectation E(β̂1) = β1.
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HW

Show that E(β̂0) = β0
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Property 2: Consistency

If we have two estimators, β̂0,n, β̂1,n

(β̂0,n=1, β̂1,n=1) · · · (β̂0,n=m, β̂1,n=m)

As (n = m) becomes large β̂0,n=m, β̂1,n=m converge to the
true parameters, β0, β1.
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β̂0, β̂1 are consistent

We know that:

β̂1 = β1 +
SXu

SXX
= β1 +

SXu/N
SXX/N

As N → β0,
SXu → Cov(X ,u)

and by the Law of large numbers SXu = 0
As N →∞,

SXX → Var(X ) = σ2X

Therefore, Plimβ̂ = β

Susan Thomas Properties of linear regression model estimators



Assumptions needed for efficiency

Assumptions on the error, ui .
1 Assumption of homoskedasticity : ui ∼ i.i.d in conditional

variance σ2

V (ui |X1,i ) = E(u2
i |X1,i ) = σ2 ∀i

2 Assumption of serial independence.

CovE(ui ,uj |X1,i ) = E(uiuj |X1,i ) = 0 i 6= j
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Precision of estimators and model
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Step 1: How precisely are the estimators observed?

The “precision of estimators” is captured by the estimator’s
variance.

var(β̂1) = var
[
β1 +

SXu

SXX

]
= 0 +

1
[SXX ]2

var(SXu)

But var(SXu) = var[
∑

(X1,i − X̄ )ui ]

= [
∑

var(X1,i − X̄ )ui ] by serial independence

=
∑

(Xi − X̄ )2var(ui)

= σ2
u

∑
(X1,i − X̄ )2

= σ2
uSXX
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Variance of OLS estimators

The variance of the estimators are:

var(β̂1) =
σ2

u
SXX

(1)

var(β̂0) =

∑
X 2

i .σ
2
u

NSXX
(2)

cov(β̂0, β̂1) = − X̄1σ
2
u

SXX
(3)

Where SXX =
∑

(X1,i − X̄1)2

The higher the SXX (more variation in X) and larger the
sample size, N, the lower is the se of the estimated
parameters.
With larger samples and higher variability in X, we estimate
β more precisely.
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σ2
u estimator

The above are the “true” or population variances, which is
unknown because σ2

u is unknown.
We estimate σ2

u as:

Ŷi = β̂0 + β̂1X1,i

⇒ ûi = Yi − Ŷi

⇒ ûi = Yi − β̂0 − β̂0X1,i estimate errors

σ̃2
u =

∑
û2

i
N

Law of large numbers

⇐ σ̃2
u → σ2

u

But the above is biased. An unbiased estimator is:

σ̂2
u =

∑
û2

i
(N − 2)

(N − 2), not N, because there are two parameters to
estimate: (β0, β1), using which we got ûi . N > 2 for the σ2

u
to be positive.
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Using σ2
u to calculate var(β)

ûi satisfy σ̂ =
√
σ̂2 is

Standard error of the disturbances, or
Standard error of regression

The estimated variances are

V̂ (β̂1) = s2
β̂1

= σ̂2
u/SXX

V̂ (β̂0) = s2
β̂0

= σ̂2
u
∑

X 2
1,i/(NSXX )

Ĉov(β̂0, β̂1) = s(β̂0β̂1)
= −X̄1σ̂

2
u/SXX

The square root of the estimated variances above, are
called the “standard errors” of the regression coefficients.
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Goodness of Fit

Overall Goodness of Fit : many straight lines can pass
through the observation paris. The OLS fitted line is the
“best”.
Yet it is imprecise: it does not pass through all the points,
because of the errors ui .
A quantification of how “good” is the fit of the relationship is
captured by the R2 measure.
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Goodness of Fit for Yi = β0 + εi

If we knew only Yi ’s then our best predictor would be Ȳ .
Then error would be (Yi − Ȳ ).
If we square and sum all the errors we get∑

(Yi − Ȳ )2 = TSS, Total sum of squared errors

Sample standard deviation:

σ̂Y =

√∑
(Yi − Ȳ )2

N − 1
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Goodness of Fit for Yi = β0 + β1X1,i + ui

If we know X1,i , β̂0, β̂1, and the linear relation between Yi
and X1,i , we can compute

Ŷi = β̂0 + β̂1X1,i

⇒ ûi = Yi − Ŷi ,Estimated errors∑
û2

i = ESS, Error sum of squares

σ̂u =

√
ESS

(N − 2)
, Standard deviation, dispersion of errors
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Yi = β0 + εi vs Yi = β0 + β1X1,i + ui

Compare σ̂u to σ̂ε.
Large reduction means good fitted relation. But σ̂u to σ̂ε
depend on unit of measurement.∑

(Yi − Ȳ )2 =
∑

(Ŷi − Ȳ )2 +
∑

(Yi − Ŷ )2

TSS = RSS + ESS

Dividing both sides by TSS:

R2 = 1− ESS
TSS

Thus, Yi − Ȳ = (Ŷi − Ȳ ) + (Yi − Ŷ )
The same holds true for sum of square also: TSS = ESS +
RSS, or R2 = 1− ESS

TSS
R2 → “coefficient of multiple determination”.
Jargon: In single variable case the word “multiple” does not
apply. R2 is instead called “coefficient of determination”.
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Characteristics of R2

Better the fit, the close are the scatter points to the fitted
line.
Then, the lower would be

∑
û2

i , or ESS, and greater would
be RSS.
Thus R2 is a measure of goodness of fit.
ESS −→ Unexplained variation.
RSS −→ Explained variation.
Thus R2 is the percentage of total variation explained by
model.
Low R2 means that a lot of variation in Yi is unexplained by
model.
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Features of R2

It is obvious that 0 ≤ R2 ≤ 1

We know that TSS = RSS + ESS
TSS
TSS

=
RSS
TSS

+
ESS
TSS

1 = R2 +
ESS
TSS

−→ 1− ESS
TSS

Since 0 ≤ ESS
TSS

≤ 1 −→ 0 ≤ R2 ≤ 1

How to decide if R2 is high or low?
⇒ No unique answer
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HW

Show that E(Ŷi) = Ȳ .
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The OLS model

Under the assumptions of:
1 Y = Xβ + u (linear in parameters)
2 E(β̂) = β (unbiased)
3 E(u|X ) = 0
4 X are fixed for i , Cov(Xi ,ui ) = 0
5 ui ∼ iid , such that σ2

i = σ2 (homoskedasticity)
6 Cov(ui ,uj |Xi ) = 0, (serial independence)

β = (X ′X )−1(X ′Y )

These parameters are called the Ordinary Least Squares
or “OLS” parameters.
Note: no distribution assumption on ui .
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OLS is “BLUE”

The parameters minimising the SSE (
∑

u2
i ) are most

efficient among other linear, unbiased, estimators.
Jargon: OLS parameters are BLUE : Best Linear Unbiased
Estimators.
Key to note here: it’s only “best” amongst linear and
unbiased estimators.
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Getting there

β̂1 = SXY
SXX

SXY =
X

XiYi −
1
N

X
Xi

X
Yi

=
X

XiYi − X̄
X

Yi

=
X

(Xi − X̄ )Yi

Rewrite β̂1 =

P
(Xi − X̄ )Yi

SXX
=
X (Xi − X̄ )

SXX
.Yi

=
X

ωiYi

Now,Yi = β0 + β1Xi + ui

With independence⇒ var(Y ) = var(ui ) = σ2

Therefore, var(β̂1) =
X

ω2
i var(Yi ) = σ2

X
ω2

i
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Compare with alternative linear unbiased estimators

β̃1 =
∑

aiYi

E(β̃1) =
X

aiE(Yi )

E(β̃1) =
X

ai [β0 + β1Xi ]

β̃1 =
X

aiYi

Set ai = ωi + di

Then β̃1 =
X

(ωi + di )Yi

β̃ =
X

ωiYi +
X

diYi = β̂1 +
X

diYi

E(β̃1) = β1 +
X

diE(Yi )

= β1 +
X

di [β0 + β1Xi ]

E(β̃)1 = β1 + β0

X
di + β1

X
diXi

For unbiasedness, we need:∑
di = 0, and

∑
diXi = 0
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Checking for efficiency of β̃1

What is the var(β̃1)

var(β̃1) =
X

(ωi + di )
2σ2

= σ2
X

(ω2
i + d2

i + 2ωidi )

Therefore, var(β̃) = σ2
X

ωt2 + σ2
X

dt2 + 2σ2
X

ωidi

But we know that:X
ωidi =

X„
Xi − X̄

SXX

«
di

=

P
Xidi − X̄

P
di

SXX
= 0

Which means:

var(β̃) = σ2
X

ω2
i + σ2

X
d2

i + 2σ2
X

ωidi

= σ2(
X

ω2
i +

X
d2

i ) > σ2
X

ω2
i

Therefore, β̂1 is BLUE.
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