Inference and forecasting in OLS

Susan Thomas IGIDR, Bombay

13 October, 2008

Susan Thomas Inference and forecasting in OLS

< 🗇 ▶

프 🕨 🛛 프

Recap

• The linear regression model is one of the form:

$$Y_i = \beta_0 + \beta_1 X_{1,i} + \beta_2 X_{2,i} + \ldots + \beta_J X_{J,i} + u_i$$

• Or, $Y = X\beta + U$ where $\beta = (\beta_0, \beta_1, \beta_2, \dots, \beta_J)'$

• Where β minimise the SSE:

$$\sum \epsilon_i = \sum (Y_i - \beta_0 - \dots - \beta_J X_{J,i}) = \sum u_i = 0$$
$$\min_{\beta,\sigma^2} \sum (Y_i - \beta_0 - \beta_1 X_{1,i} - \dots - \beta_J X_{J,i})^2 = \min_{\beta,\sigma^2} \sum u_i^2$$

• The solution for this is

$$\beta = (X'X)^{-1}(X'Y)$$

where $\beta \sim N(0, \sigma^2/S_{XX})$

Next goal: How do we form and test null hypothesis in this framework?

Hypothesis testing

• We know that
$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$$
. Or,
 $Y_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{u}_i$

- Test 1: Is $\beta_1 = 0$? Ie, is there any effect of X_i on Y_i ?
- Alternatively, the test can be whether β₁ = 0.1? When X_i increases by 1, Y_i increases by 0.1.
- Generally, we want to test if $\beta = \beta_{H_0}$. (This is a test with population parameters against our null.)
- However, $\hat{\beta}_1$ is a good estimator for β_1
- So, we would like to test if $\hat{\beta} = \beta_{H_0}$, or is $\hat{\beta} \beta_{H_0}$ small?
- Since $\hat{\beta}$ is rv, this would depend upon the distribution of $\hat{\beta}$.
- If we can make a statement like:

$$rac{\hat{eta}-eta_{\mathcal{H}_0}}{\sigma_{\hat{eta}}}\sim \textit{N}(0,1)$$

then the difference should be a small number with a very high probability where the probability is well-defined.

- Form H_0 , and H_A
- Isometric to the estimator of the estimator begin tested.
- Form the decision rule.

伺 とくき とくき とう

ъ

Step 1: Formulating two opposing hypothesis

- Null Hypothesis, H₀
- Alternative Hypothesis, H_A

$$H_0: \qquad \beta = \beta_0$$

$$H_A: \qquad \beta \neq \beta_0 \quad \text{(Two tailed test)}$$

$$H_0: \qquad \beta = \beta_0$$

$$H_A: \qquad \beta > \beta_0 \quad \text{(One tailed test)}$$

$$H_0: \qquad \beta = \beta_0$$

$$H_A: \qquad \beta < \beta_0 \quad \text{(One tailed test)}$$

ヘロン 人間 とくほ とくほ とう

3

Step 2: Distribution of β

Assumption: For given X_i

$$u_i \sim N(0, \sigma^2)$$

• Since $Y_i = \beta_0 + \beta_1 X_i + u_i$ $\Rightarrow Y_i \sim N(\beta_0 + \beta_1 X_i, \sigma^2)$

• $\hat{\beta}_1 = \sum \omega_i Y_i$, where

$$\omega_{i} = \frac{(X_{i} - \bar{X})}{S_{XX}}$$

$$\Rightarrow \hat{\beta}_{1} \qquad \text{Linear in Y}$$

$$\Rightarrow \hat{\beta}_{1} \sim N(\beta_{1}, \sigma_{\beta_{1}}^{2}) \qquad \sigma_{\beta_{1}}^{2} = \frac{\sigma^{2}}{S_{XX}}$$

$$\frac{\hat{\beta}_{1} - \beta_{1}}{\sigma_{\hat{\beta}_{1}}} \sim N(0, 1)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Distribution of $\hat{\beta}_1$

• We have $(\hat{\beta}_0, \hat{\beta}_1)$ are normally distributed as:

$$\hat{\beta}_0 \sim \mathcal{N}(\beta_0, \sigma_{\beta_0}^2) \quad \Rightarrow \quad \frac{(\hat{\beta}_0 - \beta_0)}{\sigma_{\beta_0}^2} \sim \mathcal{N}(0, 1)$$

$$\hat{\beta}_1 \sim \mathcal{N}(\beta_1, \sigma_{\beta_1}^2) \quad \Rightarrow \quad \frac{(\hat{\beta}_1 - \beta_1)}{\sigma_{\beta_1}^2} \sim \mathcal{N}(0, 1)$$

We need σ_{β1}, σ_{β0} – only have an estimator.
Estimator for σ_{β1}:

$$\sigma_{\hat{\beta}_1} = \mathcal{S}^2_{\hat{\beta}_1} = \frac{\sum \hat{u}_i^2}{(N-2)}$$

• Distribution for $\hat{\beta}_1$:

$$(rac{\hat{eta}_1-eta_1}{S_{\hat{eta}_1}})$$

Is the distribution same as N(0,1)?

ヨン くヨン -

Deriving the distribution of $\hat{\beta}_1$

• Observation:
$$\sum \frac{\hat{u}_i^2}{\sigma^2} \sim \chi^2_{(N-2)}$$

• Observation: $\hat{\beta}_0, \hat{\beta}$, and $\sum \frac{\hat{\nu}_i^2}{\sigma^2}$ are independent.

• Fact: If $W \sim N(0, 1)$ and $Z \sim \chi^2(N)$, then

$$W/\sqrt{(Z/N)} \sim t(N)$$

This means we can write:

$$\frac{\hat{\beta}_1 - \beta_1}{\sigma_{\hat{\beta}_1}^2} / \sqrt{\frac{\sum \hat{u}_i^2}{\sigma^2}} \cdot \frac{1}{N-2} \sim t(N-2)$$

What does this "reduce" to?

Deriving the distribution of \hat{eta}_1

$$\frac{\hat{\beta} - \beta}{\sigma_{\hat{\beta}}} / \sqrt{\frac{\sum \hat{u}_{t^{2}}}{N - 2} \cdot \frac{1}{\sigma^{2}}} \sim t(N - 2)$$

$$\frac{\hat{\beta} - \beta}{\sigma_{\hat{\beta}}} / \sqrt{\frac{\hat{\sigma}^{2}}{\sigma^{2}}} \sim t(N - 2)$$

$$\frac{\hat{\beta} - \beta}{\sigma_{\hat{\beta}}} / \frac{\hat{\sigma}}{\sigma} \quad \text{or} \quad \frac{\hat{\beta} - \beta}{\sigma_{\hat{\beta}}} \cdot \frac{\sigma}{\hat{\sigma}} \sim t(N - 2)$$
But, $\frac{\sigma}{\sigma_{\hat{\beta}}\hat{\sigma}} = \frac{\beta}{\frac{\sigma}{\sqrt{S_{XX}}}, \hat{\sigma}} = \frac{1}{\frac{\hat{\sigma}}{\sqrt{S_{XX}}}} = \frac{1}{S_{\hat{\beta}}}$
Therefore, $\frac{\hat{\beta} - \beta}{S_{\hat{\beta}}} \sim t(N - 2)$

Under H_0 : $\beta = \beta_0$ and the test is:

$$t_c = \frac{\hat{\beta} - \beta_0}{S_{\hat{\beta}}} \sim t(N-2)$$

(雪) (ヨ) (ヨ)

ъ

Recap: Hypothesis testing, the decision rule

- Fix a critical level, α
- If H_0 is true, then the t_c will be less than $t(N-2)(\alpha)$ value 95% of the time.
- If t_c > t(N-2)(α), then a very unlikely value has happened and we do not accept H₀ and consider the alternative H_A.
- Decision rule:

$$\begin{array}{rcl} t_c &> t(N-2)(\alpha) & \text{Do not accept } H_0 \\ t_c &\leq t(N-2)(\alpha) & \text{Accept } H_0 \end{array}$$

• If $H_0: \beta = 0$, then

$$t_{c} = \frac{\hat{\beta}}{S_{\hat{\beta}}} = \text{t-statistic}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

A numerical example

•
$$\hat{eta} = 0.13875, S_{\hat{eta}} = 0.01873, N = 14, K = 2$$

- Test $H_0: \beta = 0, H_1: \beta > 0$ at $\alpha = 0.01$ (99% confidence)
- t(12)(0.01) = 2.681

•
$$t_c = \frac{0.13875}{0.01873} = 7.41$$

t_c > *t*(12)(0.01), Therefore do not accept *H*₀, consider *H_A* : β > 0

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

A numerical example, 2

•
$$\hat{\beta}_0 = 52.351, S_{\hat{\beta}_0} = 37.285, N = 14, K = 2$$

• Test H_0 : $\beta_0 = 0, H_1$: $\beta_0 < 0$ at $\alpha = 0.01$ (99% confidence)

•
$$t(12)(0.01) = 2.681$$

•
$$t_c = \frac{52.351}{37.285} = 1.404$$

•
$$t_c < t(12)(0.01)$$
,
Therefore cannot reject H_0 , ie, accept $H_0 : \beta_0 = 0$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Testing goodness of fit using R^2

Susan Thomas Inference and forecasting in OLS

◆□ → ◆ 三 → ◆ 三 → ● < ⊙ < ⊙

- There is no absolute value of R^2 for "good fit".
- However, we can test $H_0: R^2 = 0$ against $H_A: R^2 > 0$.
- If we cannot reject H_0 : $R^2 = 0$, then the model does not fit.
- Alternative POV:

$$\begin{array}{rrrr} H_0 & : & R^2 = 0 \\ H_A & : & R^2 > 0 \end{array} \Rightarrow \begin{array}{rrr} H_0 & : & \rho_{XY} = 0 \\ H_A & : & \rho_{XY} \neq 0 \end{array}$$

・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・

3

Step 2: Deriving the test-statistic

$$F = \frac{R^{2}(n-2)}{(1-R^{2})} \sim F_{1,(N-2)}$$

$$F = \frac{\frac{RSS}{TSS}(N-2)}{(1-\frac{RSS}{TSS})}$$

$$F = \frac{RSS(N-2)}{ESS} \sim F_{1,(N-2)}$$

Susan Thomas Inference and forecasting in OLS

ヘロン 人間 とくほど くほとう

₹ 990

$$F > F_{1,(n-2)}^*(0.05) \Rightarrow \text{reject } H_0 : R^2 = 0$$

Otherwise accept H_0

Susan Thomas Inference and forecasting in OLS

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - 釣A@

Example

- $R^2 = 0.82052, N 2 = 12$
- Remember that R^2 is (ESS/TSS).
- What is the value of F for this example?

F is:

$$F = \frac{0.82052(14-2)}{1-0.82052} \\ = 54.86$$

- At α = 0.05, F_{1,12} = 4.75
- Do you accept or not accept the H₀?
- F > 4.75, therefore Reject H₀.
 le, the model with this R² has some explanatory power.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Predicting *Y_i*

Susan Thomas Inference and forecasting in OLS

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ 釣へ()>

Confidence intervals for $\hat{\beta}_1$

- If $Y_i = \beta_0 + \beta_1 X_i + u_i$, what is our estimate of $\beta \Rightarrow \hat{\beta}$?
 - (1) $\hat{\beta}$ is a point-estimate. $\hat{\beta}$ is a random variable from different samples. Therfore it has distribution
 - Instead of a point estimate for β, we can estimate a confidence interval for β
 - We know $t_c = \frac{\hat{\beta} \beta}{S_{\hat{\beta}}} \sim t(N-2)$ and therefore $t(n-2)(\alpha/2)$ and $t(n-2)(\alpha/2)$
 - and therefore $-t(n-2)(\alpha/2)$ and $+t(n-2)(\alpha/2)$ Such that $P[-t(n-2)(\alpha/2) \le t_c \le t(n-2)(\alpha/2)] = 1 - \alpha$
 - 5 This means:

$$[-t(N-2)(\alpha/2) \le \frac{\hat{\beta}-\beta}{S_{\hat{\beta}}} \le t(N-2)(\alpha/2)] = 0.95$$
$$\Rightarrow P[\hat{\beta}-t(N-2)(\alpha/2)S_{\hat{\beta}} \le \beta \le \hat{\beta} + t(N-2)(\alpha/2)S_{\hat{\beta}}] = 0.95$$

(日本) (日本) (日本) 日

A numerical example

•
$$\hat{\beta} = 0.13875, S_{\hat{\beta}} = 0.01873, N = 14, K = 2$$

• At $\alpha = 0.05, \alpha/2 = 0.025, t(12)(0.025) = 2.179$

• 95% CI for
$$\hat{\beta} = 0.13875 \pm (2.179 \times 0.18373)$$

 \Rightarrow [0,099,0.179]

Susan Thomas Inference and forecasting in OLS

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Forecasting Y_i

•
$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

• Suppose $X_i = X_0$. Want to estimate Y_0 .

• If we know β_0, β_1 surely, then

$$Y_0 = \beta_0 + \beta_1 X_0 + u_0$$

$$\Rightarrow E(Y_0|X_0) = \beta_0 + \beta_1 X_0$$

This is the conditional mean of Y_0 given X_0 .

• We know a sample estimate $\hat{\beta}_0, \hat{\beta}_1$. Then:

$$\hat{Y}_0 = \hat{\beta}_0 + \hat{\beta}_1 X_0$$

• \hat{Y}_0 is an unbiased predictor of the average of Y, given X_0 :

$$\Rightarrow E(\hat{Y}_0|X_0) = E(\hat{\beta}_0) + E(\hat{\beta}_1X_0)$$
$$= \beta_0 + \beta_1X_0$$

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ …

Variance of \hat{Y}_0

• We see \hat{Y}_0 is a rv –what is it's variance?

$$\operatorname{var}(\hat{Y}_{0}) = \operatorname{var}(\hat{\beta}_{0} + \hat{\beta}_{1}X_{0})$$
$$= \operatorname{var}(\hat{\beta}_{0}) + \operatorname{var}(\hat{\beta}_{1}X_{0}) + 2Cov(\hat{\beta}_{0}, \hat{\beta}_{1}X_{0})$$
$$= \frac{\sum X_{i}^{2}}{N} \cdot \frac{\sigma^{2}}{S_{XX}} + X_{0}^{2} \cdot \frac{\sigma^{2}}{S_{XX}} - 2X_{0}\frac{\bar{X}, \sigma^{2}}{S_{XX}}$$
$$\operatorname{var}(\hat{Y}_{0}) = \frac{\sum X_{i}^{2}}{N} \cdot \frac{\sigma^{2}}{S_{XX}} + X_{0}^{2} \cdot \frac{\sigma^{2}}{S_{XX}} - 2X_{0}\bar{X}\frac{\sigma^{2}}{S_{XX}}$$

Estimate for variance:

$$S^{2}_{\hat{Y}_{0}} = \hat{\sigma}^{2} \left[rac{1}{N} + rac{(X_{0} - \bar{X})^{2}}{S_{XX}}
ight]$$

• The variance of \hat{Y}_0 is a function of $(X_0 - \bar{X})!$ The further X_i is away from \bar{X} , the larger the variance of $E(Y_i)$.

Forecast of \hat{Y}_0

•
$$\mathsf{E}(\hat{Y}_0|X_0) = \hat{\beta}_0 + \hat{\beta}_1 X_0$$

• var
$$(\hat{Y}_0) = S_{\hat{Y}_0}^2 = \hat{\sigma}^2 \left[\frac{1}{N} + \frac{(X_0 - \bar{X})^2}{S_{XX}} \right]$$

• 95% confidence interval:

$$\hat{Y}_0 \pm t(N-2)(lpha/2).S_{\hat{Y}_0}$$

Where $\alpha/2$ is the critical value for a two-tailed test. And $t(N-2)(\alpha/2)$ is the critical region

• At
$$\alpha = 0.05$$
, 95% Cl $\Rightarrow t(12)(0.025) = 2.179$

◆□> ◆◎> ◆注> ◆注>

3

HW: Numerical example

• These are the estimation results for a model: $Y_i = \beta_0 + \beta_1 X_i + u_i.$

- $\hat{Y}_i = 52.351 + 0.13875X_i$
- Std. Error of coefficients are: 37.29, 0.019
- $R^2 = 0.821, (N-2) = 12, \sigma^2 = 39.023$
- What is $(\hat{Y}_0 | X_0 = 2000)$?
- Can you calculate the var($\hat{Y}_0 | X_0 = 2000$)?
- 2 What is the mathematical form of $var(\hat{u}_0)$?