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Recap

The linear regression model is one of the form:

Yi = β0 + β1X1,i + β2X2,i + . . .+ βJXJ,i + ui

Or, Y = Xβ + U where β = (β0, β1, β2, . . . , βJ)′

Where β minimise the SSE:∑
εi =

∑
(Yi − β0 − . . .− βJXJ,i) =

∑
ui = 0

minβ,σ2

∑
(Yi − β0 − β1X1,i − . . .− βJXJ,i)

2 = minβ,σ2

∑
u2

i

The solution for this is

β = (X ′X )−1(X ′Y )

where β ∼ N(0, σ2/SXX )

Next goal: How do we form and test null hypothesis in this
framework?
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Hypothesis testing

We know that Ŷi = β̂0 + β̂1Xi . Or,

Yi = β̂0 + β̂1Xi + ûi

Test 1: Is β1 = 0? Ie, is there any effect of Xi on Yi?
Alternatively, the test can be whether β1 = 0.1? When Xi
increases by 1, Yi increases by 0.1.
Generally, we want to test if β = βH0 . (This is a test with
population parameters against our null.)
However, β̂1 is a good estimator for β1
So, we would like to test if β̂ = βH0 , or is β̂ − βH0 small?
Since β̂ is rv, this would depend upon the distribution of β̂.
If we can make a statement like:

β̂ − βH0

σβ̂
∼ N(0,1)

then the difference should be a small number with a very
high probability where the probability is well-defined.
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Recap:The hypothesis testing framework, 3 steps

1 Form H0, and HA

2 Form the distribution of the estimator begin tested.
3 Form the decision rule.
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Step 1: Formulating two opposing hypothesis

1 Null Hypothesis, H0

2 Alternative Hypothesis, HA

H0 : β = β0

HA : β 6= β0 (Two tailed test)

H0 : β = β0

HA : β > β0 (One tailed test)

H0 : β = β0

HA : β < β0 (One tailed test)
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Step 2: Distribution of β

Assumption: For given Xi

ui ∼ N(0, σ2)

Since Yi = β0 + β1Xi + ui

⇒ Yi ∼ N(β0 + β1Xi , σ
2)

β̂1 =
∑
ωiYi , where

ωi =
(Xi − X̄ )

SXX

⇒ β̂1 Linear in Y

⇒ β̂1 ∼ N(β1, σ
2
β1

) σ2
β1

=
σ2

SXX

β̂1 − β1

σβ̂1

∼ N(0,1)
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Distribution of β̂1

We have (β̂0, β̂1) are normally distributed as:

β̂0 ∼ N(β0, σ
2
β0

) ⇒ (β̂0−β0)

σ2
β0

∼ N(0,1)

β̂1 ∼ N(β1, σ
2
β1

) ⇒ (β̂1−β1)

σ2
β1

∼ N(0,1)

We need σβ̂1
, σβ̂0

– only have an estimator.
Estimator for σβ̂1

:

σβ̂1
= S2

β̂1
=

∑
û2

i
(N − 2)

Distribution for β̂1:

(
β̂1 − β1

Sβ̂1

)

Is the distribution same as N(0,1)?
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Deriving the distribution of β̂1

Observation:
∑ û2

i
σ2 ∼ χ2

(N−2)

Observation: β̂0, β̂, and
∑ û2

i
σ2 are independent.

Fact: If W ∼ N(0,1) and Z ∼ χ2(N), then

W/
√

(Z/N) ∼ t(N)

This means we can write:

β̂1 − β1

σ2
β̂1

/

√∑
û2

i
σ2 .

1
N − 2

∼ t(N − 2)

What does this “reduce” to?
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Deriving the distribution of β̂1

β̂ − β
σβ̂

/

√∑
ût2

N − 2
.

1
σ2 ∼ t(N − 2)

β̂ − β
σβ̂

/

√
σ̂2

σ2 ∼ t(N − 2)

β̂ − β
σβ̂

/
σ̂

σ
or

β̂ − β
σβ̂

.
σ

σ̂
∼ t(N − 2)

But,
σ

σβ̂ σ̂
=

6 σ
6σ√
SXX

.σ̂
=

1
σ̂√
SXX

=
1

Sβ̂

Therefore,
β̂ − β

Sβ̂

∼ t(N − 2)

Under H0 : β = β0 and the test is:

tc =
β̂ − β0

Sβ̂
∼ t(N − 2)

Susan Thomas Inference and forecasting in OLS



Recap: Hypothesis testing, the decision rule

Fix a critical level, α
If H0 is true, then the tc will be less than t(N − 2)(α) value
95% of the time.
If tc > t(N−2)(α), then a very unlikely value has happened
and we do not accept H0 and consider the alternative HA.
Decision rule:

tc > t(N − 2)(α) Do not accept H0
tc ≤ t(N − 2)(α) Accept H0

If H0 : β = 0, then

tc =
β̂

Sβ̂
= t-statistic
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A numerical example

β̂ = 0.13875,Sβ̂ = 0.01873,N = 14,K = 2
Test H0 : β = 0,H1 : β > 0 at α = 0.01 (99% confidence)
t(12)(0.01) = 2.681

tc = 0.13875
0.01873 = 7.41

tc > t(12)(0.01),
Therefore do not accept H0, consider HA : β > 0
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A numerical example, 2

β̂0 = 52.351,Sβ̂0
= 37.285,N = 14,K = 2

Test H0 : β0 = 0,H1 : β0 < 0 at α = 0.01 (99% confidence)
t(12)(0.01) = 2.681

tc = 52.351
37.285 = 1.404

tc < t(12)(0.01),
Therefore cannot reject H0, ie, accept H0 : β0 = 0
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Testing goodness of fit using R2
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Step 1: Forming H0,HA

There is no absolute value of R2 for “good fit”.
However, we can test H0 : R2 = 0 against HA : R2 > 0.
If we cannot reject H0 : R2 = 0, then the model does not fit.
Alternative POV:

H0 : R2 = 0
HA : R2 > 0

⇒ H0 : ρXY = 0
HA : ρXY 6= 0
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Step 2: Deriving the test-statistic

F =
R2(n − 2)

(1− R2)
∼ F1,(N−2)

F =
RSS
TSS (N − 2)

(1− RSS
TSS )

F =
RSS(N − 2)

ESS
∼ F1,(N−2)
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Step 3: Decision Rule

F > F ∗1,(n−2)(0.05) ⇒ reject H0 : R2 = 0
Otherwise accept H0
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Example

R2 = 0.82052,N − 2 = 12
Remember that R2 is (ESS/TSS).
What is the value of F for this example?
F is:

F =
0.82052(14− 2)

1− 0.82052
= 54.86

At α = 0.05, F1,12 = 4.75
Do you accept or not accept the H0?
F > 4.75, therefore Reject H0.
Ie, the model with this R2 has some explanatory power.
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Predicting Yi
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Confidence intervals for β̂1

If Yi = β0 + β1Xi + ui , what is our estimate of β ⇒ β̂?
1 β̂ is a point-estimate. β̂ is a random variable from different

samples. Therfore it has distribution
2 Instead of a point estimate for β, we can estimate a

confidence interval for β
3 We know tc = β̂−β

Sβ̂
∼ t(N − 2)

and therefore −t(n − 2)(α/2) and +t(n − 2)(α/2)
4 Such that P[−t(n − 2)(α/2) ≤ tc ≤ t(n − 2)(α/2)] = 1− α
5 This means:

[−t(N − 2)(α/2) ≤ β̂ − β
Sβ̂

≤ t(N − 2)(α/2)] = 0.95

⇒ P[β̂ − t(N − 2)(α/2)Sβ̂ ≤ β ≤ β̂ + t(N − 2)(α/2)Sβ̂] = 0.95
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A numerical example

β̂ = 0.13875,Sβ̂ = 0.01873,N = 14,K = 2
At α = 0.05, α/2 = 0.025, t(12)(0.025) = 2.179

95% CI for β̂ = 0.13875+(2.179× 0.18373)

⇒ [0,099,0.179]

Susan Thomas Inference and forecasting in OLS



Forecasting Yi

Yi = β0 + β1Xi + ui

Suppose Xi = X0. Want to estimate Y0.
If we know β0, β1 surely, then

Y0 = β0 + β1X0 + u0

⇒ E(Y0|X0) = β0 + β1X0

This is the conditional mean of Y0 given X0.
We know a sample estimate β̂0, β̂1. Then:

Ŷ0 = β̂0 + β̂1X0

Ŷ0 is an unbiased predictor of the average of Y, given X0:

⇒ E(Ŷ0|X0) = E(β̂0) + E(β̂1X0)

= β0 + β1X0
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Variance of Ŷ0

We see Ŷ0 is a rv –what is it’s variance?

var(Ŷ0) = var(β̂0 + β̂1X0)

= var(β̂0) + var(β̂1X0) + 2Cov(β̂0, β̂1X0)

=

∑
X 2

i
N

.
σ2

SXX
+ X 2

0 .
σ2

SXX
− 2X0

X̄ , σ2

SXX

var(Ŷ0) =

∑
X 2

i
N

.
σ2

SXX
+ X 2

0 .
σ2

SXX − 2X0X̄ σ2

SXX

Estimate for variance:

S2
Ŷ0

= σ̂2
[

1
N

+
(X0 − X̄ )2

SXX

]
The variance of Ŷ0 is a function of (X0 − X̄ )!
The further Xi is away from X̄ , the larger the variance of
E(Yi).
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Forecast of Ŷ0

E(Ŷ0|X0) = β̂0 + β̂1X0

var(Ŷ0) = S2
Ŷ0

= σ̂2
[

1
N + (X0−X̄)2

SXX

]
95% confidence interval:

Ŷ0+t(N − 2)(α/2).SŶ0

Where α/2 is the critical value for a two-tailed test.
And t(N − 2)(α/2) is the critical region

At α = 0.05, 95% CI⇒ t(12)(0.025) = 2.179
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HW: Numerical example

1 These are the estimation results for a model:
Yi = β0 + β1Xi + ui .

Ŷi = 52.351 + 0.13875Xi
Std. Error of coefficients are: 37.29,0.019
R2 = 0.821, (N − 2) = 12, σ2 = 39.023
What is (Ŷ0|X0 = 2000)?
Can you calculate the var(Ŷ0|X0 = 2000)?

2 What is the mathematical form of var(û0)?
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