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@ The linear regression model is one of the form:
Yi= 0o+ 01 X1+ BaXoj+ ...+ ByXyi+ U

@ Or, Y = X3+ Uwhere 8 = (5o, 51,52, -, 84)
@ Where 3 minimise the SSE:

de=> (Yi—Bo—-. —BsXs) = D ui=0
ming .2 Z( Yi—Bo—BiXii— ... — BuXy;)? = ming Z uf
@ The solution for this is
B=(X'X)(X'Y)
where 5 ~ N(0, 02 /Sxx)

@ Next goal: How do we form and test null hypothesis in this
framework?
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Hypothesis testing

@ We know that ¥; = 3, + 51 X;. Or,
Yi= 0o+ 51X+ U
@ Test1:Is By = 07 le, is there any effect of X; on Y;?
@ Alternatively, the test can be whether 8y = 0.1? When X;
increases by 1, Y; increases by 0.1.
@ Generally, we want to test if 3 = 34,. (This is a test with
population parameters against our null.)
@ However, 3; is a good estimator for /3
@ So, we would like to test if 3 = Gy, or is 3 — B, small?
@ Since {3 is rv, this would depend upon the distribution of /3.
@ If we can make a statement like:

/3 - ﬂHo
93
then the difference should be a small number with a very
high probability where the probability is well-defined.
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Recap:The hypothesis testing framework, 3 steps

@ Form Hy, and H,
© Form the distribution of the estimator begin tested.
© Form the decision rule.
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Step 1: Formulating two opposing hypothesis

@ Null Hypothesis, Hy
© Alternative Hypothesis, Hj

Ho: B=0
Hy : B # By (Two tailed test)

Ho: B=0
Hp - B> Bo (One tailed test)

Ho: B=0
Hy - 8 < Bg (One tailed test)
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Step 2: Distribution of 3

@ Assumption: For given X;
u;j ~ N(0, o)
@ Since Y; = Gy + 1 Xi + u;
= Yi~ N(bo + 1 X, 0%)
@ (1 = w;Y;, where

b~ Xi=X)
’ Sxx
= 31 Linear in Y
A N 2 2 o?
=B~ (51;051) Um*SiXX
oA
B
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Distribution of 3

@ We have (3, (1) are normally distributed as:

Bo ~ N(fo,03) = L)« N(0,1)
ﬁo

By~ N(By,03) = 5P N, 1)
ﬂ1

@ We need 75,,08, — only have an estimator.
@ Estimator for 0,

o _ LU

8, = 9p = (N—2)

@ Distribution for 3;: A
B1 — B
( )
S,

Is the distribution same as N(0,1)?
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Deriving the distribution of 3;

@ Observation: > Z—Z ~ XN 2)
@ Observation: (g, 3, and 3 Z—Z are independent.
@ Fact: If W ~ N(0,1) and Z ~ x?(N), then

W//(Z/N) ~ t(N)

@ This means we can write:

Bi—B1, |0 A
02 / o2 'N—2Nt(N_2)

@ What does this “reduce” to?
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Deriving the distribution of 3;

B—p e 1
O',é / I\Z/—tZ'O'Z ~ t(Niz)
-5, |62
S~ w2
B-p 6 B-Bo
B8
But, UA: /TA: 1 = i
0’@0’ @_g \/@ S@
Therefore,ﬁ_ﬁ ~ tN=-2)
Sp
Under Hp : 8 = (g and the test is:
=" N -2)
3
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Recap: Hypothesis testing, the decision rule

@ Fix a critical level, «
@ If Hy is true, then the {; will be less than {(N — 2)(«) value
95% of the time.
@ If t; > t(N—2)(«), then a very unlikely value has happened
and we do not accept Hy and consider the alternative Ha.
@ Decision rule:
fc > t(N—2)(«) Do notaccept Hy
e < t(N-2)(«a) Accept Hy
@ If Hy: 8 =0, then

. = g = t-statistic

Ss
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A numerical example

@ 3=0.13875, S;=0.01873, N =14,K =2
@ TestHy: 3=0,H;: 3 >0ata=0.01(99% confidence)
@ #(12)(0.01) = 2.681

_ 013875 _
® fc = goiers = /41

@ t. > #(12)(0.01),
Therefore do not accept Hy, consider Hy: 3 > 0
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A numerical example, 2

@ 3y =52.351, S;, =37.285,N=14,K =2
@ Test Hy: 8o =0,H; : By < 0ata=0.01(99% confidence)
@ #(12)(0.01) = 2.681

_ 52.351 __
o t, = 52351 — 1,404

@ t. < #(12)(0.01),
Therefore cannot reject Hy, ie, accept Hy : Bg = 0
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Testing goodness of fit using R?
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Step 1: Forming Hy, Ha

@ There is no absolute value of R? for “good fit”.

@ However, we can test Hp : R% = 0 against Ha : R? > 0.

@ If we cannot reject Hp : R? = 0, then the model does not fit.
@ Alternative POV:

Ho : F]’2:0 . Ho . pXYZO
Hy R? >0 Ha : pxy #0
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Step 2: Deriving the test-statistic

R?(n - 2)

F = (1 - R?) ~ F1(n-2)

Fo_ ASS(N - 2)
(1-7%)

F RSS(N — 2)

£SS ~ Fi(n-2)
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Step 3: Decision Rule

F > F{(, 2(0.05) = reject Hy: RZ =0
Otherwise accept Hy
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R? = 0.82052, N —2 =12

Remember that R? is (ESS/TSS).

What is the value of F for this example?
Fis:

0.82052(14 — 2)

1 —0.82052
= 54.86

At o = 005, F1,12 =475
Do you accept or not accept the Hy?

F > 4.75, therefore Reject Hy.
le, the model with this R? has some explanatory power.
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Predicting Y;
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Confidence intervals for 3

@ If Y; = By + 51 X; + uj, what is our estimate of 8 = /3?
@ /s a point-estimate. /3 is a random variable from different
samples. Therfore it has distribution
@ |Instead of a point estimate for 3, we can estimate a
confidence interval for 8

© We know t; = és_ (N-2)

and therefore —t&n —2)(«/2) and +t(n — 2)(a/2)
© Such that P[-t(n—2)(a/2) < t. < t(n—2)(a/2)] =1 -«
© This means:

N

[—t(N — 2)(a/2) < Sa < t(N = 2)(a/2)] = 0.95

Q

= P[3 — t(N - 2)(a/2)S; < 8 < B+ t(N - 2)(/2)S;] = 0.95
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A numerical example

@ 3=0.13875, S;=0.01873, N =14,K =2
@ Ata =0.05,a/2 = 0.025, t(12)(0.025) = 2.179

@ 95% Cl for 3 = 0.13875+(2.179 x 0.18373)

= [0,099,0.179]
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Forecasting Y;

@ Yi=00+ 051X+ y
@ Suppose X; = Xp. Want to estimate Yj.
@ If we know [y, 31 surely, then

Yo = Bo+51Xo+ U
= E(Yo|Xo) = fBo+ 51 Xo

This is the conditional mean of Y, given Xj.
@ We know a sample estimate 3y, 31. Then:

Yo = fo + 51 X0
@ Yy is an unbiased predictor of the average of Y, given Xo:

= E(YolX) = E(Bo)+ E(B1X0)
= fo+ 51X
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Variance of Yy

@ We see Y, is a rv—what is it's variance?

var(Yo) = var(Bo + 51X)
= var(f) + var(51Xo) + 2Cov(fo, 1 Xo)

Z X2 o2 o2 X o2
~ N Sk X Sxx “2og Sxx

var( Yo) —

: + X5. —
N SXX 0 SXX — 2X0X§7);2X

Estimate for variance:

1 (X —X)?
o a2 1 0
SVO = O |:N + 78)()( :|

@ The variance of ¥; is a function of (Xo — X)!

The further X; is away from X, the larger the variance of

E(Y).
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Forecast of Y,

o E(Y|X0) = Ao + H1X0

Y A Xo—X)?
e var(¥y) = s%/o _ 52 [1N+( OSxx) }

@ 95% confidence interval:
Yo+t(N —2)(a/2).5,

Where «/2 is the critical value for a two-tailed test.
And t(N — 2)(«/2) is the critical region

@ Ata = 0.05, 95% Cl = £(12)(0.025) = 2.179

Susan Thomas Inference and forecasting in OLS



HW: Numerical example

@ These are the estimation results for a model:
Yi = o+ b1 X + ui.

Y, = 52.351 + 0.13875X;

Std. Error of coefficients are: 37.29,0.019

R2 = 0.821,(N —2) = 12,02 = 39.023

What is (Yo Xo = 2000)?

e Can you calculate the var(¥y|Xo = 2000)?

© What is the mathematical form of var(i)?
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