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@ For a simple one-exogenous variable model,
Yi = 0o+ b1 X1+ Ui

@ [y is the intercept on the “regression line” and g, is the
slope.

@ The above equation is called the “population regression
line”.

@ After estimation, we have:

Yi=Bo+ 51X+ ui

which is called the “estimated/sample regression ling”

@ 3y =Y — 31X, ie, the line passes through the mean of the
dataset.

° 31 = Syy/Sxx Where S,y is the sample covariance and Sy
is the sample variance of the exogenous data X.

@ 62 =(N-1)/Ns?
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Moving to multiple-variable models
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Model Y; = 5y + (4 X1q‘i + 0o X + €

@ Extend the two variable, gaussian distribution model with
intercept to include one more exogenous variable, Xs.

@ Economic example: log wages (Y;) as a function of
education (Xi ;) and age (Xz,;). The model for log wages
becomes:

Yi = Bo+ B1X1,i + B2 X + U

@ The model is:
e Independence: Y;, Xj ;, X2 ; are independent across i
o Normality of Y; conditional on X ;, Xz ;:
Yi ~ N[Bo + B1 X1,i + B2Xa,i, 0]
e X, Xz, is exogenous

@ Parameters: 3y, 81, B2, 0°

Susan Thomas Multiple variable models



Log Likelihood and MLE solutions

o | =—%log(2r0?) — 5Lz N1 (Yi— Bo — B X1 — BeXe,i)?

@ MLE solution involves differentiating log L wrt three
parameters and setting each to zero: three equations,
three unknowns.

@ Solution space looks like:

2. YiXi02,i YX1 0.2,i
B =
Z/ 1.0.2,i
where
Xioj = Xi—X
A < covXi X
Xiozi = Xii—Xii=Xui—X1i— # 2,i
varXo
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Log Likelihood and OLS solutions

@ Maximise the log L is the same as minimising the SSD:

N
SSD(Bo, 81, B2) = Y _(Yi— Bo — B1 X1, — BoXe,i)?

i=1
@ Here, the solution to minimising the SSE is the OLS solution:
B=X'X)"(X"Y)

Y 1 Xi1 Xo
Yo 1 Xiz Xop Bo
Y=| Y3 |, X= 1 Xz Xo3 |, B=| B
Yn 1 Xin Xon
@ The OLS solution will be of the form:
> i YiXi02,
= e,
> i X0z,

where the solution contains a “new” form of X; which is

conditional on it’s partial correlation with X5: (useful for
interpreting the model).
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Recap on reparameterisation in the two-variable
model

@ We started with:

Yi = Bo+ b1 X +e
e ~ N(0,0?)

and reparameterised it as:
Yi = v0Xo0,i + 71 X1.0,i + wi

where 44 = 31 and Xy o = (X1, — X)
@ This was convenient for interpretation: 3y is the effect on Y;
of an additional unit increase in Xj.
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Reparameterisation in the three-variable model

@ Start with:
Yi = Bo+B1X1i+ BoXo+ €
ei ~ N(O, 0'2)
and reparameterised it as:
Yi = BoXoi+ B1(Xei— Xi) + Ba(Xei — X — aXy) + wj
= 00Xo,i +01X1.0,i + 02X2.0,1,i + wi

Xioi = (X1,i—X1)
Xoo1i = (Xej—Xo) —aXi;
So = fo+ B X+ BXo
S i(Xoi — Xo) (X1, — Xi)
> X0,

09 = frtaf, a=

o2 = [
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Solution minimising SSE

@ Take the first derivative of SSE wrt dg, 61, do:
>_i(Yi—00Xo — 01 X1.0,i — 02X2.0,1.7)
@ We first solve for d».

OSSE
90, -2 Z(Yi — 00Xo — 01 X1.0,i — 62X2.0,1,i)X2.0,1,i
i

@ By construction:

(] ZI'XO'XLOJ' =0

] ZIXO'XZOJJ =0

® > i Xi0,X201,=0
@ &, solves for:

0 = > (ViXeo1i—0(Xo-Xe0,1,) — 81(Xi 0, Xe0,1.1) — 82XE0.1.1)

1

E (Yi — 02X2.0,1,i) X2.0,1,i
i
< 2
02 = E YiXo00,i/ E X50.1,i
i i
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Solution minimising SSE

@ o= YiXa01,i/ Y X201,
@ This is the partial correlation between Y, X5 ; given X ;.
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What is partial correlation?

@ Given Y;, Xj, standard correlation is py x » = %
@ Partial correlations are correlations between Y, X, given a
third variable Z.
o First two models:
Yi = agXo+oiZi+ e
Xi = wXo+vnZ+u
where X = 1
e Then
j/yAO,z,i = €&
)A(X‘O,z,i = U

Z j\/yOZI'))A((XOZI')
\/Z y(yOZI ZI (x.0,2,i)

Iyx,z is the partial correlation between (Y, X) given Z.
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Partial correlations and standard correlations

FYI: Partial correlations can be rewritten as functions of
standard (pair-wise) correlations as:

sz = Ny.2) — My.x) * Mx.2)
V=00 =)
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Numerical example of r, x, and r, x, rx 2, Iy~

@ Given w = log wages, A is age and S is years of schooling.
@ Given: r, s =0.270,ry 4 = 0.115,rg 4 = —0.139.
@ What is the partial correlation between log wages and age,
given schooling?
fw.A) = ltw,s) * (5,4

\/(1 —Bys)( =B p)

0.115 — (0.270 x —0.139)
V(1 —0.2702)(1 — (-0.139)?)
= 0.1599 ~ 0.160

rW.A,S -

@ Interpretation: For people with the same schooling, age
explains around rf , 5 = 3% of the variation in log wages.

@ Calculate the partial correlation between log wages and
schooling, given age?

r Iw,A) = fw,s) * I(s, A) 0.270 — (0.115 x —0.139)
w.AS — —
\/(1 Tow.s)) (1 = 1 ) V(1 —-0.1152)(1 — (~0.139)?)
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Back to the reparameterised model

Y = BoXoi+Bi1(Xii— X1)+ Be(Xe — Xo — aXi) + wi
= 00Xo,i+ 61 X1.0,i + 62X0.0,1,i + wi

@ 0 =3 YiXo01,/ Z/X22.0,1,i

P Z/YX10I
1= E/ 1.0,i
o 50—Y

° G|V|ng Bo = b0,
ﬁ1 = (51 + COV(XQ, X1) * SX ﬁg
Bo = do — 61 X1 — 92Xa
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Bo + Bi X1+ BaXai
= S0+ 01 X1.0, + 02X0.01.i
b o= Y-V
RSS = ) 0f = No*

An unbiased estimator for 02 = s2 = 55 RSS.
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Intrepreting the parameters

@ (3 is the conditional expectation of Y; when X; ; = X5; = 0.
E(Yi|X1i=0,X2;=0)= /o

@ (31 is the marginal increase in Y; for an additional increase
in X1 — conditional on X> remaining the same.

@ Similarly, 35 is the marginal increase in Y; for an additional
increase in X; — conditional on X, remaining the same.
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A new twist in the estimation tale: correlation between Xj ;
and Xg’,'.

If there exists px, x, that would affect the conditional mean
of Y;.

What if PXy, Xo = 0?

The two exogenous variables are orthogonal and
contribute different information to Y;. Two separate
regressions can be run:

Yi= 0o+ 81 X1+ U Yy = By + foXo,i + U]

and {3, 3> would be the same as in the joint estimation.
What if if px, x, =17

Trouble in estimation!

This is called “perfect collinearity” — using the same
information through two different sources and trying to
estimate two different parameters.

More typically, px, x, ~ 1 = “near collinearity”.
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