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Recap

For a simple one-exogenous variable model,

Yi = β0 + β1X1,i + ui

β0 is the intercept on the “regression line” and β1 is the
slope.
The above equation is called the “population regression
line”.
After estimation, we have:

Yi = β̂0 + β̂1X1,i + ui

which is called the “estimated/sample regression line”
β̂0 = Ȳ − β̂1X̄ , ie, the line passes through the mean of the
dataset.
β̂1 = Sxy/Sxx where Sxy is the sample covariance and Sxx
is the sample variance of the exogenous data X .
σ̂2 = (N − 1)/Nσ̂2
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Moving to multiple-variable models
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Model Yi = β0 + β1X1,i + β2X2,i + εi

Extend the two variable, gaussian distribution model with
intercept to include one more exogenous variable, X2.
Economic example: log wages (Yi ) as a function of
education (X1,i ) and age (X2,i ). The model for log wages
becomes:

Yi = β0 + β1X1,i + β2X2,i + ui

The model is:
Independence: Yi ,X1,i ,X2,i are independent across i
Normality of Yi conditional on X1,i ,X2,i :
Yi ∼ N[β0 + β1X1,i + β2X2,i , σ

2]
X1,i ,X2,i is exogenous

Parameters: β0, β1, β2, σ
2
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Log Likelihood and MLE solutions

l = −N
2 log (2πσ2)− 1

2σ2

∑N
i=1(Yi − β0 − β1X1,i − β2X2,i)

2

MLE solution involves differentiating log L wrt three
parameters and setting each to zero: three equations,
three unknowns.
Solution space looks like:

β1 =

∑
i YiX1.0.2,i∑

i X 2
1.0.2,i

where

X1.0,i = Xi − X̄

X1.0.2,i = X1,i − X̂1,i = X1,i − X̄1,i −
covX1X2

varX2
X2,i
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Log Likelihood and OLS solutions

Maximise the log L is the same as minimising the SSD:

SSD(β0, β1, β2) =
NX

i=1

(Yi − β0 − β1X1,i − β2X2,i )
2

Here, the solution to minimising the SSE is the OLS solution:

β = (X ′X )−1(X ′Y )

Y =

266664
Y1

Y2

Y3

. . .
YN

377775 , X =

266664
1 X1,1 X2,1

1 X1,2 X2,2

1 X1,3 X2,3

. . . . . . . . .
1 X1,N X2,N

377775 , β =

24 β0

β1

β2

35
The OLS solution will be of the form:

β1 =

∑
i YiX1.0.2,i∑

j X 2
1.0.2,j

where the solution contains a “new” form of X1 which is
conditional on it’s partial correlation with X2: (useful for
interpreting the model).
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Recap on reparameterisation in the two-variable
model

We started with:

Yi = β0 + β1Xi + εi

εi ∼ N(0, σ2)

and reparameterised it as:

Yi = γ0X0,i + γ1X1.0,i + ωi

where γ̂1 = β̂1 and X1.0,i = (X1,i − X̄ )

This was convenient for interpretation: β1 is the effect on Yi
of an additional unit increase in X1.
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Reparameterisation in the three-variable model

Start with:

Yi = β0 + β1X1,i + β2X2,i + εi

εi ∼ N(0, σ2)

and reparameterised it as:

Yi = β0X0,i + β1(X1,i − X̄1) + β2(X2,i − X̄2 − αX1) + ωi

= δ0X0,i + δ1X1.0,i + δ2X2.0,1,i + ωi

Where:

X1.0,i = (X1,i − X̄1)

X2.0,1,i = (X2,i − X̄2)− αX1,i

δ0 = β0 + β1X̄1 + β2X̄2

δ1 = β1 + αβ2, α =

∑
i(X2,i − X̄2)(X1,i − X̄1)∑

i X 2
1.0,i

δ2 = β2
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Solution minimising SSE

Take the first derivative of SSE wrt δ0, δ1, δ2:∑
i(Yi − δ0X0 − δ1X1.0,i − δ2X2.0,1,i)

We first solve for δ2.

∂SSE
∂δ2

= −2
∑

i

(Yi − δ0X0 − δ1X1.0,i − δ2X2.0,1,i)X2.0,1,i

By construction:∑
i X0.X1.0,i = 0∑
i X0.X2.0,1,i = 0∑
i X1.0,i .X2.0,1,i = 0

δ̂2 solves for:

0 =
X

i

(YiX2.0,1,i − δ̂0(X0.X2.0,1,i )− δ̂1(X1.0,iX2.0,1,i )− δ̂2X 2
2.0,1,i )

0 =
X

i

(Yi − δ̂2X2.0,1,i )X2.0,1,i

δ̂2 =
X

i

YiX2.0,1,i/
X

i

X 2
2.0,1,i
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Solution minimising SSE

δ̂2 =
∑

i YiX2.0,1,i/
∑

i X 2
2.0,1,i

This is the partial correlation between Yi ,X2,i given X1,i .
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What is partial correlation?

Given Yi ,Xi , standard correlation is ρy .x .z =
P

i (Yi−Ȳ )(Xi−X̄)
var(Y )var(X)

Partial correlations are correlations between Y ,X , given a
third variable Z .

First two models:

Yi = α0X0 + α1Zi + ei

Xi = γ0X0 + γ1Zi + ui

where X0 = 1

Then

ŷy.0,z,i = ei

x̂x.0,z,i = ui

ry.x,z =

∑
i ŷ(y.0,z,i)x̂(x.0,z,i)√∑

i ŷ2
(y.0,z,i)

∑
i x̂2

(x.0,z,i)

ry .x ,z is the partial correlation between (Y ,X ) given Z .
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Partial correlations and standard correlations

FYI: Partial correlations can be rewritten as functions of
standard (pair-wise) correlations as:

ry .x ,z =
r(y ,z) − r(y ,x) ∗ r(x ,z)√
(1− r2

(y ,x))(1− r2
(x ,z))
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Numerical example of ry .x .z and ry .x , rx .z , ry .z

Given w = log wages, A is age and S is years of schooling.
Given: rw ,S = 0.270, rw ,A = 0.115, rS,A = −0.139.
What is the partial correlation between log wages and age,
given schooling?

rw.A,S =
r(w,A) − r(w,S) ∗ r(S,A)q
(1− r 2

(W ,S))(1− r 2
(S,A))

=
0.115− (0.270 ∗ −0.139)p
(1− 0.2702)(1− (−0.139)2)

= 0.1599 ∼ 0.160

Interpretation: For people with the same schooling, age
explains around r2

w ,A.S = 3% of the variation in log wages.
Calculate the partial correlation between log wages and
schooling, given age?

rw.A,S =
r(w,A) − r(w,S) ∗ r(S,A)q
(1− r 2

(W ,S))(1− r 2
(S,A))

=
0.270− (0.115 ∗ −0.139)p
(1− 0.1152)(1− (−0.139)2)

∼ 0.291
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Back to the reparameterised model

Yi = β0X0,i + β1(X1,i − X̄1) + β2(X2,i − X̄2 − αX1) + ωi

= δ0X0,i + δ1X1.0,i + δ2X2.0,1,i + ωi

δ̂2 =
∑

i YiX2.0,1,i/
∑

i X 2
2.0,1,i

δ̂1 =
P

i Yi X1.0,iP
i X 2

1.0,i

δ̂0 = Ȳ .
Giving: β̂2 = δ̂2,
β̂1 = δ̂1 + ĉov(X2,X1) ∗ s2

X2
β̂2

β̂0 = δ̂0 − δ̂1X̄1 − δ̂2X̄2
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σ2

Ŷi = β̂0 + β̂1X1,i + β̂2X2,i

= δ̂0 + δ̂1X1.0,i + δ̂2X2.0,1,i

ûi = Yi − Ŷi

RSS =
∑

i

û2
i = Nσ̂2

An unbiased estimator for σ2 = s2 = 1
N−3RSS.
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Intrepreting the parameters

β0 is the conditional expectation of Yi when X1,i = X2,i = 0.

E(Yi |X1,i = 0,X2,i = 0) = β0

β1 is the marginal increase in Yi for an additional increase
in X1 – conditional on X2 remaining the same.
Similarly, β2 is the marginal increase in Yi for an additional
increase in X1 – conditional on X2 remaining the same.
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What is new?

A new twist in the estimation tale: correlation between X1,i
and X2,i .
If there exists ρX1,X2 that would affect the conditional mean
of Yi .
What if ρX1,X2 = 0?
The two exogenous variables are orthogonal and
contribute different information to Yi . Two separate
regressions can be run:
Yi = β0 + β1X1,i + ui ; Yi = β′0 + β2X2,i + u′i
and β̂1, β̂2 would be the same as in the joint estimation.
What if if ρX1,X2 = 1?
Trouble in estimation!
This is called “perfect collinearity” – using the same
information through two different sources and trying to
estimate two different parameters.
More typically, ρX1,X2 ∼ 1⇒ “near collinearity”.
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