Multiple variable models

Susan Thomas
IGIDR, Bombay

21 October, 2008

- For a simple one-exogenous variable model,

$$
Y_{i}=\beta_{0}+\beta_{1} X_{1, i}+u_{i}
$$

- β_{0} is the intercept on the "regression line" and β_{1} is the slope.
- The above equation is called the "population regression line".
- After estimation, we have:

$$
Y_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} X_{1, i}+u_{i}
$$

which is called the "estimated/sample regression line"

- $\hat{\beta}_{0}=\bar{Y}-\hat{\beta}_{1} \bar{X}$, ie, the line passes through the mean of the dataset.
- $\hat{\beta}_{1}=S_{x y} / S_{x x}$ where $S_{x y}$ is the sample covariance and $S_{x x}$ is the sample variance of the exogenous data X.
- $\hat{\sigma}^{2}=(N-1) / N \hat{\sigma}^{2}$

Moving to multiple-variable models

- Extend the two variable, gaussian distribution model with intercept to include one more exogenous variable, X_{2}.
- Economic example: log wages $\left(Y_{i}\right)$ as a function of education ($X_{1, i}$) and age ($X_{2, i}$). The model for log wages becomes:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{1, i}+\beta_{2} X_{2, i}+u_{i}
$$

- The model is:
- Independence: $Y_{i}, X_{1, i}, X_{2, i}$ are independent across i
- Normality of Y_{i} conditional on $X_{1, i}, X_{2, i}$:

$$
Y_{i} \sim N\left[\beta_{0}+\beta_{1} X_{1, i}+\beta_{2} X_{2, i}, \sigma^{2}\right]
$$

- $X_{1, i}, X_{2, i}$ is exogenous
- Parameters: $\beta_{0}, \beta_{1}, \beta_{2}, \sigma^{2}$

Log Likelihood and MLE solutions

- $I=-\frac{N}{2} \log \left(2 \pi \sigma^{2}\right)-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{N}\left(Y_{i}-\beta_{0}-\beta_{1} X_{1, i}-\beta_{2} X_{2, i}\right)^{2}$
- MLE solution involves differentiating log L wrt three parameters and setting each to zero: three equations, three unknowns.
- Solution space looks like:

$$
\beta_{1}=\frac{\sum_{i} Y_{i} X_{1.0 .2, i}}{\sum_{i} X_{1.0 .2, i}^{2}}
$$

where

$$
\begin{aligned}
X_{1.0, i} & =X_{i}-\bar{X} \\
X_{1.0 .2, i} & =X_{1, i}-\hat{X}_{1, i}=X_{1, i}-\bar{X}_{1, i}-\frac{\operatorname{cov} X_{1} X_{2}}{\operatorname{var} X_{2}} X_{2, i}
\end{aligned}
$$

Log Likelihood and OLS solutions

- Maximise the $\log L$ is the same as minimising the SSD:

$$
\operatorname{SSD}\left(\beta_{0}, \beta_{1}, \beta_{2}\right)=\sum_{i=1}^{N}\left(Y_{i}-\beta_{0}-\beta_{1} X_{1, i}-\beta_{2} X_{2, i}\right)^{2}
$$

- Here, the solution to minimising the SSE is the OLS solution:

$$
\begin{gathered}
\beta=\left(X^{\prime} X\right)^{-1}\left(X^{\prime} Y\right) \\
Y=\left[\begin{array}{c}
Y_{1} \\
Y_{2} \\
Y_{3} \\
\ldots \\
Y_{N}
\end{array}\right], \quad X=\left[\begin{array}{ccc}
1 & X_{1,1} & X_{2,1} \\
1 & X_{1,2} & X_{2,2} \\
1 & X_{1,3} & X_{2,3} \\
\cdots & \ldots & \ldots \\
1 & X_{1, N} & X_{2, N}
\end{array}\right], \quad \beta=\left[\begin{array}{l}
\beta_{0} \\
\beta_{1} \\
\beta_{2}
\end{array}\right]
\end{gathered}
$$

- The OLS solution will be of the form:

$$
\beta_{1}=\frac{\sum_{i} Y_{i} X_{1.0 .2, i}}{\sum_{j} X_{1.0 .2, j}^{2}}
$$

where the solution contains a "new" form of X_{1} which is conditional on it's partial correlation with X_{2} : (useful for interpreting the model).

Recap on reparameterisation in the two-variable model

- We started with:

$$
\begin{aligned}
Y_{i} & =\beta_{0}+\beta_{1} X_{i}+\epsilon_{i} \\
\epsilon_{i} & \sim N\left(0, \sigma^{2}\right)
\end{aligned}
$$

and reparameterised it as:

$$
Y_{i}=\gamma_{0} X_{0, i}+\gamma_{1} X_{1.0, i}+\omega_{i}
$$

where $\hat{\gamma}_{1}=\hat{\beta}_{1}$ and $X_{1.0, i}=\left(X_{1, i}-\bar{X}\right)$

- This was convenient for interpretation: β_{1} is the effect on Y_{i} of an additional unit increase in X_{1}.

Reparameterisation in the three-variable model

- Start with:

$$
\begin{aligned}
Y_{i} & =\beta_{0}+\beta_{1} X_{1, i}+\beta_{2} X_{2, i}+\epsilon_{i} \\
\epsilon_{i} & \sim N\left(0, \sigma^{2}\right)
\end{aligned}
$$

and reparameterised it as:

$$
\begin{aligned}
Y_{i} & =\beta_{0} X_{0, i}+\beta_{1}\left(X_{1, i}-\bar{X}_{1}\right)+\beta_{2}\left(X_{2, i}-\bar{X}_{2}-\alpha X_{1}\right)+\omega_{i} \\
& =\delta_{0} X_{0, i}+\delta_{1} X_{1.0, i}+\delta_{2} X_{2.0,1, i}+\omega_{i}
\end{aligned}
$$

Where:

$$
\begin{aligned}
X_{1.0, i} & =\left(X_{1, i}-\bar{X}_{1}\right) \\
X_{2.0,1, i} & =\left(X_{2, i}-\bar{X}_{2}\right)-\alpha X_{1, i} \\
\delta_{0} & =\beta_{0}+\beta_{1} \bar{X}_{1}+\beta_{2} \bar{X}_{2} \\
\delta_{1} & =\beta_{1}+\alpha \beta_{2}, \quad \alpha=\frac{\sum_{i}\left(X_{2, i}-\bar{X}_{2}\right)\left(X_{1, i}-\bar{X}_{1}\right)}{\sum_{i} X_{1.0, i}^{2}} \\
\delta_{2} & =\beta_{2}
\end{aligned}
$$

Solution minimising SSE

- Take the first derivative of SSE wrt $\delta_{0}, \delta_{1}, \delta_{2}$:

$$
\sum_{i}\left(Y_{i}-\delta_{0} X_{0}-\delta_{1} X_{1.0, i}-\delta_{2} X_{2.0,1, i}\right)
$$

- We first solve for δ_{2}.

$$
\frac{\partial S S E}{\partial \delta_{2}}=-2 \sum_{i}\left(Y_{i}-\delta_{0} X_{0}-\delta_{1} X_{1.0, i}-\delta_{2} X_{2.0,1, i}\right) X_{2.0,1, i}
$$

- By construction:
- $\sum_{i} X_{0} \cdot X_{1.0, i}=0$
- $\sum_{i} X_{0} \cdot X_{2 \cdot 0,1, i}=0$
- $\sum_{i} X_{1.0, i} \cdot X_{2.0,1, i}=0$
- $\hat{\delta}_{2}$ solves for:

$$
\begin{aligned}
0 & =\sum_{i}\left(Y_{i} X_{2.0,1, i}-\hat{\delta}_{0}\left(X_{0 .} X_{2.0,1, i}\right)-\hat{\delta}_{1}\left(X_{1.0, i} X_{2.0,1, i}\right)-\hat{\delta}_{2} X_{2.0,1, i}^{2}\right) \\
0 & =\sum_{i}\left(Y_{i}-\hat{\delta}_{2} X_{2.0,1, i}\right) X_{2.0,1, i} \\
\hat{\delta}_{2} & =\sum_{i} Y_{i} X_{2.0,1, i} / \sum_{i} X_{2.0,1, i}^{2}
\end{aligned}
$$

Solution minimising SSE

- $\hat{\delta}_{2}=\sum_{i} Y_{i} X_{2.0,1, i} / \sum_{i} X_{2.0,1, i}^{2}$
- This is the partial correlation between $Y_{i}, X_{2, i}$ given $X_{1, i}$.

What is partial correlation?

- Given Y_{i}, X_{i}, standard correlation is $\rho_{y . x . z}=\frac{\sum_{i}\left(Y_{i}-\bar{Y}\right)\left(X_{i}-\bar{X}\right)}{\operatorname{var}(Y) \operatorname{var}(X)}$
- Partial correlations are correlations between Y, X, given a third variable Z.
- First two models:

$$
\begin{aligned}
Y_{i} & =\alpha_{0} X_{0}+\alpha_{1} Z_{i}+\boldsymbol{e}_{i} \\
X_{i} & =\gamma_{0} X_{0}+\gamma_{1} Z_{i}+\boldsymbol{u}_{i} \\
\text { where } X_{0} & =1
\end{aligned}
$$

- Then

$$
\begin{aligned}
\hat{y}_{y \cdot 0, z, i} & =e_{i} \\
\hat{x}_{x .0, z, i} & =u_{i} \\
r_{y \cdot x, z} & =\frac{\sum_{i} \hat{y}_{(y .0, z, i)} \hat{x}_{(x .0, z, i)}}{\sqrt{\sum_{i} \hat{y}_{(y \cdot 0, z, i)}^{2} \sum_{i} \hat{x}_{(x .0, z, i)}^{2}}}
\end{aligned}
$$

$r_{y, X, Z}$ is the partial correlation between (Y, X) given Z.

FYI: Partial correlations can be rewritten as functions of standard (pair-wise) correlations as:

$$
r_{y, x, z}=\frac{r_{(y, z)}-r_{(y, x)} * r_{(x, z)}}{\sqrt{\left(1-r_{(y, x)}^{2}\right)\left(1-r_{(x, z)}^{2}\right)}}
$$

Numerical example of $r_{y, x, z}$ and $r_{y, x}, r_{x, z}, r_{y, z}$

- Given $\mathbf{w}=\log$ wages, \mathbf{A} is age and \mathbf{S} is years of schooling.
- Given: $r_{w, S}=0.270, r_{w, A}=0.115, r_{S, A}=-0.139$.
- What is the partial correlation between log wages and age, given schooling?

$$
\begin{aligned}
r_{w, A, S} & =\frac{r_{(w, A)}-r_{(w, S)} * r_{(S, A)}}{\sqrt{\left(1-r_{(W, S)}^{2}\right)\left(1-r_{(S, A)}^{2}\right)}} \\
& =\frac{0.115-(0.270 *-0.139)}{\sqrt{\left(1-0.270^{2}\right)\left(1-(-0.139)^{2}\right)}} \\
& =0.1599 \sim 0.160
\end{aligned}
$$

- Interpretation: For people with the same schooling, age explains around $r_{w, A . S}^{2}=3 \%$ of the variation in log wages.
- Calculate the partial correlation between log wages and schooling, given age?
$r_{w . A, S}=\frac{r_{(w, A)}-r_{(w, S)} * r_{(S, A)}}{\sqrt{\left(1-r_{(W, S)}^{2}\right)\left(1-r_{(S, A)}^{2}\right)}}=\frac{0.270-(0.115 *-0.139)}{\sqrt{\left(1-0.115^{2}\right)\left(1-(-0.139)^{2}\right)}} \sim 0.291$

Back to the reparameterised model

$$
\begin{aligned}
Y_{i} & =\beta_{0} X_{0, i}+\beta_{1}\left(X_{1, i}-\bar{X}_{1}\right)+\beta_{2}\left(X_{2, i}-\bar{X}_{2}-\alpha X_{1}\right)+\omega_{i} \\
& =\delta_{0} X_{0, i}+\delta_{1} X_{1.0, i}+\delta_{2} X_{2.0,1, i}+\omega_{i}
\end{aligned}
$$

- $\hat{\delta}_{2}=\sum_{i} Y_{i} X_{2.0,1, i} / \sum_{i} X_{2.0,1, i}^{2}$
- $\hat{\delta}_{1}=\frac{\sum_{i} Y_{i} X_{1.0, i}}{\sum_{i} X_{1.0, i}^{2}}$
- $\hat{\delta}_{0}=\bar{Y}$.
- Giving: $\hat{\beta}_{2}=\hat{\delta}_{2}$,
$\hat{\beta}_{1}=\hat{\delta}_{1}+\hat{\operatorname{cov}}\left(X_{2}, X_{1}\right) * s_{X_{2}}^{2} \hat{\beta}_{2}$
$\hat{\beta}_{0}=\hat{\delta}_{0}-\hat{\delta}_{1} \bar{X}_{1}-\hat{\delta}_{2} \bar{X}_{2}$

$$
\begin{aligned}
\hat{Y}_{i} & =\hat{\beta}_{0}+\hat{\beta}_{1} X_{1, i}+\hat{\beta}_{2} X_{2, i} \\
& =\hat{\delta}_{0}+\hat{\delta}_{1} X_{1.0, i}+\hat{\delta}_{2} X_{2.0,1, i} \\
\hat{u}_{i} & =Y_{i}-\hat{Y}_{i} \\
\operatorname{RSS} & =\sum_{i} \hat{u}_{i}^{2}=N \hat{\sigma}^{2}
\end{aligned}
$$

An unbiased estimator for $\sigma^{2}=s^{2}=\frac{1}{N-3}$ RSS.

Intrepreting the parameters

- β_{0} is the conditional expectation of Y_{i} when $X_{1, i}=X_{2, i}=0$.

$$
E\left(Y_{i} \mid X_{1, i}=0, X_{2, i}=0\right)=\beta_{0}
$$

- β_{1} is the marginal increase in Y_{i} for an additional increase in X_{1} - conditional on X_{2} remaining the same.
- Similarly, β_{2} is the marginal increase in Y_{i} for an additional increase in X_{1} - conditional on X_{2} remaining the same.

What is new?

- A new twist in the estimation tale: correlation between $X_{1, i}$ and $X_{2, i}$.
- If there exists $\rho_{X_{1}, X_{2}}$ that would affect the conditional mean of Y_{i}.
- What if $\rho_{X_{1}, X_{2}}=0$?

The two exogenous variables are orthogonal and contribute different information to Y_{i}. Two separate regressions can be run:
$Y_{i}=\beta_{0}+\beta_{1} X_{1, i}+u_{i} ; Y_{i}=\beta_{0}^{\prime}+\beta_{2} X_{2, i}+u_{i}^{\prime}$
and $\hat{\beta}_{1}, \hat{\beta}_{2}$ would be the same as in the joint estimation.

- What if if $\rho_{X_{1}, X_{2}}=1$?

Trouble in estimation!
This is called "perfect collinearity" - using the same information through two different sources and trying to estimate two different parameters.

- More typically, $\rho_{X_{1}, X_{2}} \sim 1 \Rightarrow$ "near collinearity".

