Inference in the multiple regression model

Susan Thomas
IGIDR, Bombay

3 November, 2008

Recap: a three-variable regression model

- $Y_{i}=\beta_{0}+\beta_{1} X_{1, i}+\beta_{2} X_{2, i}+u_{i}$
- Independence: $Y_{i}, X_{1, i}, X_{2, i}$ are independent across i
- Normality of Y_{i} conditional on $X_{1, i}, X_{2, i}$:

$$
Y_{i} \sim N\left[\beta_{0}+\beta_{1} X_{1, i}+\beta_{2} X_{2, i}, \sigma^{2}\right]
$$

- $X_{1, i}, X_{2, i}$ is exogenous
- Parameters: $\beta_{0}, \beta_{1}, \beta_{2}, \sigma^{2}$
- Reparameterised model: $Y_{i}=\delta_{0}+\delta_{1} X_{1.0, i}+\delta_{2} X_{2.0 .1, i}+u_{i}$ Parameters: $\delta_{0}, \delta_{1}, \delta_{2}, \sigma^{2}$

Solution space for coefficients

- 2-variables - $\delta_{1}=\frac{\sum_{i} Y_{i} X_{1.0, i}}{\sum_{i} X_{1.0, i}^{2}}$ which is related to the correlation between Y, X_{1}.
- 3-variable model - δ_{1}, δ_{2} :

$$
\hat{\beta}_{2}=\hat{\delta}_{2}=\frac{\sum_{i} Y_{i} X_{2.0 .1, i}}{\sum_{i} X_{2.0 .1, i}^{2}}
$$

which is related to the partial correlation between $Y, X_{2.0 .1}$, where $X_{2.0 .1}$ is X_{2} net of the effects of X_{0}, X_{1}.

- New concept: partial correlation.

$$
r_{y, x_{1}, x_{2}}=\frac{r_{y, x_{2}}-r_{y, x_{1}} * r_{x_{1}, x_{2}}}{\sqrt{\left(1-r_{y, x_{1}}^{2}\right)\left(1-r_{x_{1}, x_{2}}^{2}\right)}}
$$

- New aspect of the estimation problem: Collinearity. If $r_{x_{1}, x_{2}}^{2}=1$, then $\hat{\delta}_{1}, \hat{\delta}_{2}$ cannot be estimated.

Solution space for $\hat{\beta}_{0}$

- 2-variables: $\hat{\beta}_{0}=\bar{Y}-\hat{\beta}_{1} \bar{X}_{1}$
- 3-variables: $\hat{\delta}_{0}=\hat{\beta}_{0}+\hat{\beta}_{1} \bar{X}_{1}+\hat{\beta}_{2} \bar{X}_{2}$
- HW: Work out what is $\hat{\beta}_{0}$ in terms of $\hat{\beta}_{1}, \hat{\beta}_{2}, \bar{X}_{1}, \bar{X}_{2}, \bar{Y}$.

Solution space for $\hat{\sigma}^{2}$

- 2-variables: $Y_{i}=\beta_{0}+\beta_{1} X_{1}+\epsilon_{i}$

$$
\hat{\sigma}^{2}=\frac{\sum_{i} \hat{\epsilon}_{i}^{2}}{N-2}
$$

- 3-variables: $Y_{i}=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+u_{i}$

$$
\hat{\sigma}^{2}=\frac{\sum_{i} \hat{u}_{i}^{2}}{N-3}
$$

Inference for $Y_{i}=\beta_{0}+\beta_{1} X_{1, i}+\beta_{2} X_{2, i}+u_{i}$

(1) Test the estimated coefficient $\hat{\beta}_{i}$ against H_{0} individually. Distribution of $\hat{\beta}_{i}$ is $\mathrm{N}\left(\beta_{i}, \sigma_{i}^{2}\right)$.
(2) Test whether the model is significant. Benchmark model: $Y_{i}=\beta_{0}(=\bar{Y})+\epsilon_{i}$
Tests used: LR test, R^{2} (F-distribution)
(3) Test sets of coefficients jointly. For example, $H_{0}: \beta_{1}=\beta_{2}, H_{A}: \beta_{1} \neq \beta_{2}$ Tests used: LR test after reparameterising the model and re-estimating it.

Testing single coefficient estimates

Distribution of $\hat{\beta}_{1}$

- $\beta_{1}=\frac{\sum_{i} Y_{i} X_{1.0 .2, i}}{\sum_{i} X_{1.0 .2, i}^{2}}$
- By expanding $Y_{i}=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+u_{i}$, it can be shown that

$$
\hat{\beta}_{1}=\beta_{1}+\frac{\sum_{i} X_{1.0 .2, i} u_{i}}{\sum_{i} X_{1.0 .2, i}^{2}}
$$

(1) $\mathrm{E}\left(\hat{\beta}_{1}\right)=\beta_{1}$
(2) $\operatorname{var}\left(\hat{\beta}_{1}\right)=\sigma_{u}^{2} / \sum_{i} X_{1.0 .2, i}^{2}$

$$
\hat{\beta}_{1} \sim N\left(\beta_{1}, \frac{\sigma_{u}^{2}}{\sum_{i} X_{1.0 .2, i}^{2}}\right)
$$

- 2-variable model:

$$
\hat{\beta}_{1} \sim N\left(\beta_{1}, \frac{\sigma_{\epsilon}^{2}}{\sum_{i} X_{1.0, i}^{2}}\right)
$$

- With the distribution of $\hat{\beta}_{i}$ we can test H_{0} for $\hat{\beta}_{1}$.

What is the distribution for the estimator for β_{0} ?

Link between β_{i} and δ_{i}

- Model: $Y_{i}=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+u_{i}$
- Reparameterised model: $Y_{i}=\delta_{0}+\delta_{1} X_{1.0, i}+\delta_{2} X_{2.0 .1, i}+u_{i}$
- $\operatorname{cov}\left(\delta_{0}, \delta_{1}\right)=\operatorname{cov}\left(\delta_{0}, \delta_{2}\right)=\operatorname{cov}\left(\delta_{1}, \delta_{2}\right)=0$
- $\operatorname{cov}\left(\beta_{2}, \beta_{1}\right)=\frac{-\sigma_{u}^{2} r_{2,1.0}}{\left(1-r_{2,1.0}^{2}\right) \sqrt{\sum_{i} X_{2.0, i}^{2} \sum_{i} X_{1.0, i}^{2}}}$
- Again: if $r_{2,1.0} \sim 1$, then $\left(1-r_{2,1.0}^{2}\right) \sim 0$ and the estimator variances will be very large.

Testing the overall model

The form of the Liklihood Ratio (LR) test

- The LR test takes the form:

$$
-2 \log Q=-2 \log \left(L_{\text {restricted }} / L_{\text {unrestricted }}\right)^{-\frac{N}{2}}=-N \log \left(\frac{\hat{\sigma}^{2}}{\hat{\sigma}_{R}^{2}}\right) \sim \chi^{2}[n
$$

where m is the number of restrictions.

- For example, if we want to test $H_{0}: \beta_{2}=0$, then
(1) $\sigma_{R}^{2}=\sigma_{w}^{2}$ from model $Y_{i}=\beta_{0}+\beta_{1} X_{1}+w_{i}$
(2) $\sigma_{U}^{2}=\sigma_{u}^{2}$ from model $Y_{i}=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+u_{i}$ and the test statistic is:
(3) $\chi^{2}[1]$
- $R^{2}=\frac{\text { ESS }}{\text { TSS }}$
- $N \sigma_{u}^{2}=\mathrm{RSS}=\mathrm{TSS}-\mathrm{ESS}=\left(1-R^{2}\right) \mathrm{TSS}$
- In 2-variable model: $R^{2}=r_{Y, X_{1}}^{2}$
- In 3-variable model:

$$
\begin{aligned}
N \sigma_{u}^{2} & =\left(1-r_{Y, X_{2.0 .1}}^{2}\right)\left(1-r_{Y, X_{1.0}}^{2}\right) T S S \\
\left(1-R^{2}\right) & =\left(1-r_{Y, X_{2.0 .1}}^{2}\right)\left(1-r_{Y, X_{1.0}}^{2}\right)
\end{aligned}
$$

- Note: for $Y_{i}=\beta_{0}+\beta_{1} X_{1}+w_{i}$, RSS is

$$
N \sigma_{w}^{2}=\left(1-r_{Y, X_{1,0}}^{2}\right) \mathrm{TSS}
$$

LR, R^{2} for restriction $\beta_{2}=0$

- Restricted model: $Y_{i}=\beta_{0}+\beta_{1} X_{1}+w_{i}$ $\sigma_{R}^{2}=\sigma_{w}^{2}=\left(1-r_{Y, X_{1,0}}^{2}\right)$ TSS
- $\mathrm{LR}=-N \log \left(\frac{\hat{\sigma}^{2}}{\hat{\sigma}_{R}^{2}}\right) \sim \chi^{2}[m=1]$

$$
\begin{aligned}
L R_{\beta_{2}=0} & =-N \frac{\left(1-r_{Y, X_{2.0 .1}}^{2}\right)\left(1-r_{Y, X_{1.0}}^{2}\right) \mathrm{TSS}}{\left(1-r_{Y, X_{1.0}}^{2}\right) \mathrm{TSS}} \\
& =-N\left(1-r_{Y, X_{2.0 .1}}^{2}\right) \sim \chi^{2}[1]
\end{aligned}
$$

LR, R^{2} for restriction $\beta_{1}=\beta_{2}=0$

- Restricted model: $Y_{i}=\beta_{0}+\epsilon_{i}$ $\sigma_{R}^{2}=\sigma_{\epsilon}^{2}=\mathrm{TSS}$
- LR $=-N \log \left(\frac{\hat{\sigma}^{2}}{\hat{\sigma}_{R}^{2}}\right) \sim \chi^{2}[m=2]$

$$
\begin{aligned}
L R_{\beta_{1}=\beta_{2}=0} & =-N \frac{\left(1-r_{Y, X_{2.0 .1}}^{2}\right)\left(1-r_{Y, X_{1.0}}^{2}\right) \mathrm{TSS}}{\mathrm{TSS}} \\
& =-N\left(1-R^{2}\right) \sim \chi^{2}[2]
\end{aligned}
$$

Some assumptions in the above tests

- The test for $\beta_{1}=\beta_{2}=0$ is done as if:
(1) Test for $\beta_{1}=0$ given that β_{2} has been shown to be 0 .

$$
\mathrm{LR}_{\beta_{2}=\beta_{1}=0}=\mathrm{LR}_{\beta_{2}=0}+\mathrm{LR}_{\beta_{1}=0 \mid \beta_{2}=0}
$$

(2) Therefore, the assumption is that these models are "correct" when we do a joint test. It may not be so: topic of "misspecification of models" while accepting/rejecting null hypothesis about the model.

- Within this framework, the most robust test is to do with testing the significance of any one coefficient.

Further tests of parameters

Linear hypothesis with > 1 parameter

- For example: $H_{0}: \beta_{1}=\beta_{2}$
- Here, the degrees of freedom is 1 for the test, but there are two parameters involved.
- Such tests are done by reparameterising the model to reflect the restriction.
- For $H_{0}: \beta_{1}=\beta_{2}$ in model: $Y_{i}=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+u_{i}$. Reparameterised model:

$$
\begin{aligned}
Y_{i} & =\beta_{0}+\beta_{1}\left(X_{1}+X_{2}\right)+\left(\beta_{2}-\beta_{1}\right) X_{2}+u_{i} \\
& =\delta_{0}+\delta_{1} Z_{1}+\delta_{2} Z_{2}+u_{i}
\end{aligned}
$$

Test: $H_{0}: \delta_{2}=0$.

- The framework of the LR test statistic remains the same, except that $m=1$.

Test whether the model is better as $H_{0}: \beta_{1}=1$

- Test with the LR framework and the hypothesis set as a model restriction.
- This also starts with reparameterising the model as .

$$
\begin{aligned}
Y_{i}-X_{2, i} & =\beta_{0}+\beta_{1} X_{1, i}+\left(\beta_{2}-1\right) X_{2, i}+u_{i} \\
T_{i} & =\delta_{0}+\delta_{1} Z_{1}+\delta_{2} Z_{2}+u_{i}
\end{aligned}
$$

Again: $H_{0}: \delta_{2}=0$.

- The framework of the LR test statistic remains the same, except that $m=1$.
- Work through the examples on Pages 116 and 117, in "Econometric Modeling" by Hendry and Nielsen.
- Work through Chapter 8, in the same book

