
Inference in the multiple regression model

Susan Thomas
IGIDR, Bombay

3 November, 2008

Susan Thomas Inference in the multiple regression model



Recap: a three-variable regression model

Yi = β0 + β1X1,i + β2X2,i + ui
Independence: Yi ,X1,i ,X2,i are independent across i
Normality of Yi conditional on X1,i ,X2,i :
Yi ∼ N[β0 + β1X1,i + β2X2,i , σ

2]
X1,i ,X2,i is exogenous

Parameters: β0, β1, β2, σ
2

Reparameterised model: Yi = δ0 + δ1X1.0,i + δ2X2.0.1,i + ui
Parameters: δ0, δ1, δ2, σ

2
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Solution space for coefficients

2-variables – δ1 =
P

i Yi X1.0,iP
i X 2

1.0,i

which is related to the correlation between Y ,X1.
3-variable model – δ1, δ2:

β̂2 = δ̂2 =

∑
i YiX2.0.1,i∑

i X 2
2.0.1,i

which is related to the partial correlation between Y ,X2.0.1,
where X2.0.1 is X2 net of the effects of X0,X1.
New concept: partial correlation.

ry .x1,x2 =
ry ,x2 − ry ,x1 ∗ rx1,x2√
(1− r2

y ,x1
)(1− r2

x1,x2
)

New aspect of the estimation problem: Collinearity. If
r2
x1,x2

= 1, then δ̂1, δ̂2 cannot be estimated.
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Solution space for β̂0

2–variables: β̂0 = Ȳ − β̂1X̄1

3–variables: δ̂0 = β̂0 + β̂1X̄1 + β̂2X̄2

HW: Work out what is β̂0 in terms of β̂1, β̂2, X̄1, X̄2, Ȳ .
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Solution space for σ̂2

2–variables: Yi = β0 + β1X1 + εi

σ̂2 =

∑
i ε̂

2
i

N − 2
3–variables: Yi = β0 + β1X1 + β2X2 + ui

σ̂2 =

∑
i û2

i
N − 3
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Inference for Yi = β0 + β1X1,i + β2X2,i + ui

1 Test the estimated coefficient β̂i against H0 individually.
Distribution of β̂i is N(βi , σ

2
i ).

2 Test whether the model is significant. Benchmark model:
Yi = β0(= Ȳ ) + εi
Tests used: LR test, R2 (F-distribution)

3 Test sets of coefficients jointly. For example,
H0 : β1 = β2,HA : β1 6= β2
Tests used: LR test after reparameterising the model and
re-estimating it.
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Testing single coefficient estimates
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Distribution of β̂1

β1 =
P

i Yi X1.0.2,iP
i X 2

1.0.2,i

By expanding Yi = β0 + β1X1 + β2X2 + ui , it can be shown
that

β̂1 = β1 +

∑
i X1.0.2,iui∑

i X 2
1.0.2,i

1 E(β̂1) = β1
2 var(β̂1) = σ2

u/
∑

i X 2
1.0.2,i

β̂1 ∼ N

(
β1,

σ2
u∑

i X 2
1.0.2,i

)
2-variable model:

β̂1 ∼ N

(
β1,

σ2
ε∑

i X 2
1.0,i

)
With the distribution of β̂i we can test H0 for β̂1.
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HW No. 1

What is the distribution for the estimator for β0?
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Link between βi and δi

Model: Yi = β0 + β1X1 + β2X2 + ui

Reparameterised model: Yi = δ0 + δ1X1.0,i + δ2X2.0.1,i + ui

cov(δ0, δ1) = cov(δ0, δ2) = cov(δ1, δ2) = 0

cov(β2, β1) = −σ2
ur2,1.0

(1−r2
2,1.0)

qP
i X 2

2.0,i
P

i X 2
1.0,i

Again: if r2,1.0 ∼ 1, then (1− r2
2,1.0) ∼ 0 and the estimator

variances will be very large.
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Testing the overall model
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The form of the Liklihood Ratio (LR) test

The LR test takes the form:

−2 log Q = −2 log(Lrestricted/Lunrestricted)−
N
2 = −N log

(
σ̂2

σ̂2
R

)
∼ χ2[m]

where m is the number of restrictions.
For example, if we want to test H0 : β2 = 0, then

1 σ2
R = σ2

w from model Yi = β0 + β1X1 + wi
2 σ2

U = σ2
u from model Yi = β0 + β1X1 + β2X2 + ui and the test

statistic is:
3 χ2[1]
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The R2

R2 = ESS
TSS

Nσ2
u = RSS = TSS - ESS = (1 - R2) TSS

In 2-variable model: R2 = r2
Y ,X1

In 3-variable model:

Nσ2
u = (1− r2

Y ,X2.0.1
)(1− r2

Y ,X1.0
)TSS

(1− R2) = (1− r2
Y ,X2.0.1

)(1− r2
Y ,X1.0

)

Note: for Yi = β0 + β1X1 + wi , RSS is

Nσ2
w = (1− r2

Y ,X1.0
)TSS
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LR, R2 for restriction β2 = 0

Restricted model: Yi = β0 + β1X1 + wi
σ2

R = σ2
w = (1− r2

Y ,X1.0
)TSS

LR = −N log
(
σ̂2

σ̂2
R

)
∼ χ2[m = 1]

LRβ2=0 = −N
(1− r2

Y ,X2.0.1
)(1− r2

Y ,X1.0
)TSS

(1− r2
Y ,X1.0

)TSS

= −N(1− r2
Y ,X2.0.1

) ∼ χ2[1]
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LR, R2 for restriction β1 = β2 = 0

Restricted model: Yi = β0 + εi
σ2

R = σ2
ε =TSS

LR = −N log
(
σ̂2

σ̂2
R

)
∼ χ2[m = 2]

LRβ1=β2=0 = −N
(1− r2

Y ,X2.0.1
)(1− r2

Y ,X1.0
)TSS

TSS
= −N(1− R2) ∼ χ2[2]
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Some assumptions in the above tests

The test for β1 = β2 = 0 is done as if:
1 Test for β1 = 0 given that β2 has been shown to be 0.

LRβ2=β1=0 = LRβ2=0 + LRβ1=0|β2=0

2 Therefore, the assumption is that these models are
“correct” when we do a joint test.
It may not be so: topic of “misspecification of models” while
accepting/rejecting null hypothesis about the model.

Within this framework, the most robust test is to do with
testing the significance of any one coefficient.
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Further tests of parameters
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Linear hypothesis with > 1 parameter

For example: H0 : β1 = β2

Here, the degrees of freedom is 1 for the test, but there are
two parameters involved.
Such tests are done by reparameterising the model to
reflect the restriction.
For H0 : β1 = β2 in model: Yi = β0 + β1X1 + β2X2 + ui .
Reparameterised model:

Yi = β0 + β1(X1 + X2) + (β2 − β1)X2 + ui

= δ0 + δ1Z1 + δ2Z2 + ui

Test: H0 : δ2 = 0.
The framework of the LR test statistic remains the same,
except that m = 1.
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Test whether the model is better as H0 : β1 = 1

Test with the LR framework and the hypothesis set as a
model restriction.
This also starts with reparameterising the model as .

Yi − X2,i = β0 + β1X1,i + (β2 − 1)X2,i + ui

Ti = δ0 + δ1Z1 + δ2Z2 + ui

Again: H0 : δ2 = 0.
The framework of the LR test statistic remains the same,
except that m = 1.
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HW No. 2

Work through the examples on Pages 116 and 117, in
“Econometric Modeling” by Hendry and Nielsen.
Work through Chapter 8, in the same book
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