Testing in the multiple regression model

Susan Thomas IGIDR, Bombay

11 November, 2008

Susan Thomas Testing in the multiple regression model

э

ъ

- Level of significance (α)
- Confidence level (1α)
- Critical value
- t-stats
- prob-value
- Standard null, $H_0: \beta_1 = 0; H_A: \beta_1 \neq 0$ (two-tailed tests)
- Accepting the Null -> Parameter is not significant at the given levl of significance.
 Rejecting the Null -> Parameter is significant

・ 「「」 ・ ・ 三 ト ・ 三 ト ・

• Test of single coefficients. $H_0: \beta_i = 0; H_A: \beta_i \neq 0$ (also could do a one-tailed test.) Also $H_0: \beta_i = C; H_A: \beta_i \neq C$ Distribution of $\hat{\beta}_i$ is t(n - k) or $N(\beta_i, \sigma_{\beta_i}^2)$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

1

Recap: Tests of hypothesis

- Test involving more than a single parameter.
 - Multiple parameters, one restriction $H_0: \beta_1 = \beta_2, H_A: \beta_1 \neq \beta_2$ Reformulate the test as $H_0: \beta_1 - \beta_2 = \gamma = 0; H_A: \gamma \neq 0$ where $E(\gamma) = f(E(\beta_1), E(\beta_2)), var(\gamma) =$ $f(var(\beta_1), var(\beta_2), cov(\beta_1, \beta_2))$
 - Multiple parameters, multiple restrictions H₀: β₁ = β₂; β₁ + β₂ + β₃ = 1; H_A : Not H₀ H_A is accepted if either or both of the restrictions are rejected.

Tests used: Reformulate the LR test after *reparameterising the model*.

$$rac{(RSS_{R}-RSS_{U})/M}{RSS_{U}/(N-K)}\sim F(M,N-K)$$

where M is the number of restrictions and K is the number of parameters estimated in the unrestricted model.

・ 同 ト ・ ヨ ト ・ ヨ ト

• Test whether the model is significant.

$$H_0: \qquad \beta_1 = 0; \beta_2 = 0; \dots \beta_k = 0;$$

$$H_A: \qquad \text{Not } H_0 = \text{ only intercept term}$$

Tests used: Same as the last case above.
 With K + 1 parameters estimated (including the intercept term), the number of restrictions in the "test of the model" M = K.

$$\frac{(RSS_R - RSS_U)/K}{RSS_U/(N - K - 1)} \sim F(K, N - K - 1)$$

Recap: Tests of hypothesis

- Test whether the model is significant.
- The test can be reframed in terms of the *R*² of the model as:

$$\begin{split} RSS_{R} &= \sum_{i} (Y_{i} - \beta_{0})^{2} = TSS \\ RSS_{U} &= \sum_{i} (Y_{i} - \beta_{0} - \beta_{1}X_{1i} - \ldots - \beta_{K}X_{Ki})^{2} \\ &= TSS - ESS_{U} \\ RSS_{R} - RSS_{u} &= ESS_{U} \\ \frac{RSS_{R} - RSS_{u}/K}{RSS_{U}/(N - K - 1)} &= \frac{RSS_{R} - RSS_{u}/K}{RSS_{U}/(N - K - 1)} TSS \\ &= \frac{R^{2}/K}{(1 - R^{2})/(N - K - 1)} \sim F_{(K, N - K - 1)} \end{split}$$

• This statistic is reported as "the model F-test" by software.

(本語) (本語) (二語)

Reading estimation results: an example

Model 1

	Value	Std. Err.	t-stats	p-value
Intercept	4.79000	0.12	38.4	0.000
Educ	-0.05000	0.02	-2.52	0.012
Educ ²	0.00515	0.00079	6.53	0.000
$\hat{\sigma} = 0.7212$	RSS = 2015.49	$R^2 = 0.083$	<i>Î</i> = -4233	

Model 2

	Value	Std. Err.	t-stats	p-value
Intercept	1.98000	0.14	13.9	0.000
Educ	-0.03800	0.018	-2.17	0.030
Educ ²	0.0046	0.00070	6.55	0.000
hours worked	0.783	0.025	31.6	0.000
$\hat{\sigma} = 0.643$	RSS = 1601.53	$R^2 = 0.271$	Î = −3787	

2

Testing hypothesis: an example

- Suggested model: $Y_i = \alpha + \beta X_i + \gamma Z_i + \epsilon_i$
- *Y_i* is log wages, *X_i* is education.
- We are told that the sample has N_1 men and N_2 women, where

$$\log \text{ wage}_{\text{men}} \sim N(\alpha_M + \beta \text{educ}, \sigma^2)$$
$$\log \text{ wage}_{\text{women}} \sim N(\alpha_W + \beta \text{educ}, \sigma^2)$$

How would you use the specified model to test $\alpha_M = \alpha_W$? Would you use a one-sided or a two-sided test?

▲ 圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ……

Testing hypothesis: an example

- The model for log wages has three parameters:
 α, β, σ² →, with α = α_M for men, α = α_W for women.
 Same coefficients except for the intercept.
- *H*₀ : α_M = α_W can be rewritten as *H*₀ : α_M α_W = γ = 0
 This means modifying the given model as:

$$X_{i} = \text{education}$$

$$Z_{i} = \begin{bmatrix} 1 & \text{for Men } i \\ 0 & \text{for Women } i \end{bmatrix}$$

$$\gamma = \alpha_{M} - \alpha_{W}$$

• This gives: $Y_i = \alpha_w + \beta X_i + \gamma Z_i + \epsilon_i$

$$Y_{i} = \alpha_{W} + \beta X_{i} + \gamma \times \mathbf{0} + \epsilon_{i} \rightarrow \text{ for Women}$$

$$= \alpha_{W} + \beta X_{i} + \epsilon_{i}$$

$$Y_{i} = \alpha_{W} + \beta X_{i} + \gamma \times \mathbf{1} + \epsilon_{i} \rightarrow \text{ for Men}$$

$$= \alpha_{W} + \beta X_{i} + \alpha_{M} - \alpha_{W} + \epsilon_{i} = \alpha_{M} + \beta X_{i} + \epsilon_{i}$$

• The test will be $H_0: \gamma = 0$ with critical value set as t(N-3)

 ϵ_i