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Recap on jargon

Level of significance (α)
Confidence level (1− α)
Critical value
t-stats
prob-value
Standard null, H0 : β1 = 0; HA : β1 6= 0 (two-tailed tests)
Accepting the Null –> Parameter is not significant at the
given levl of significance.
Rejecting the Null –> Parameter is significant
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Recap: Tests of hypothesis

Test of single coefficients.
H0 : βi = 0; HA : βi 6= 0 (also could do a one-tailed test.)
Also H0 : βi = C; HA : βi 6= C
Distribution of β̂i is t(n − k) or N(βi , σ

2
βi

).
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Recap: Tests of hypothesis

Test involving more than a single parameter.
1 Multiple parameters, one restriction

H0 : β1 = β2,HA : β1 6= β2
Reformulate the test as H0 : β1 − β2 = γ = 0; HA : γ 6= 0
where E(γ) = f (E(β1),E(β2)), var(γ) =
f (var(β1), var(β2), cov(β1, β2))

2 Multiple parameters, multiple restrictions
H0 : β1 = β2;β1 + β2 + β3 = 1; HA : Not H0
HA is accepted if either or both of the restrictions are
rejected.
Tests used: Reformulate the LR test after reparameterising
the model.

(RSSR − RSSU)/M
RSSU/(N − K )

∼ F (M,N − K )

where M is the number of restrictions and K is the number
of parameters estimated in the unrestricted model.
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Recap: Tests of hypothesis

Test whether the model is significant.

H0 : β1 = 0;β2 = 0; . . . βk = 0;

HA : Not H0 = only intercept term

Tests used: Same as the last case above.
With K + 1 parameters estimated (including the intercept
term), the number of restrictions in the “test of the model”
M = K .

(RSSR − RSSU)/K
RSSU/(N − K − 1)

∼ F (K ,N − K − 1)

Susan Thomas Testing in the multiple regression model



Recap: Tests of hypothesis

Test whether the model is significant.
The test can be reframed in terms of the R2 of the model
as:

RSSR =
∑

i

(Yi − β0)
2 = TSS

RSSU =
∑

i

(Yi − β0 − β1X1i − . . .− βK XKi)
2

= TSS − ESSU

RSSR − RSSu = ESSU

RSSR − RSSu/K
RSSU/(N − K − 1)

=
RSSR − RSSu/K TSS

RSSU/(N − K − 1) TSS

=
R2/K

(1− R2)/(N − K − 1)
∼ F(K ,N−K−1)

This statistic is reported as “the model F-test” by software.
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Reading estimation results: an example

Model 1

Value Std. Err. t-stats p-value
Intercept 4.79000 0.12 38.4 0.000
Educ -0.05000 0.02 -2.52 0.012
Educ2 0.00515 0.00079 6.53 0.000
σ̂ = 0.7212 RSS = 2015.49 R2 = 0.083 l̂ = -4233

Model 2

Value Std. Err. t-stats p-value
Intercept 1.98000 0.14 13.9 0.000
Educ -0.03800 0.018 -2.17 0.030
Educ2 0.0046 0.00070 6.55 0.000
hours worked 0.783 0.025 31.6 0.000
σ̂ = 0.643 RSS = 1601.53 R2 = 0.271 l̂ = -3787
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Testing hypothesis: an example

Suggested model: Yi = α+ βXi + γZi + εi

Yi is log wages, Xi is education.
We are told that the sample has N1 men and N2 women,
where

log wagemen ∼ N(αM + βeduc, σ2)

log wagewomen ∼ N(αW + βeduc, σ2)

1 How would you use the specified model to test αM = αW ?
2 Would you use a one-sided or a two-sided test?
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Testing hypothesis: an example

The model for log wages has three parameters:
α, β, σ2 →,with α = αM for men, α = αW for women.
Same coefficients except for the intercept.
H0 : αM = αW can be rewritten as H0 : αM − αW = γ = 0
This means modifying the given model as:

Xi = education

Zi =

[
1 for Men i
0 for Women i

]
γ = αM − αW

This gives: Yi = αw + βXi + γZi + εi

Yi = αW + βXi + γ × 0 + εi → for Women
= αW + βXi + εi

Yi = αW + βXi + γ × 1 + εi → for Men
= αW + βXi + αM − αW + εi = αM + βXi + εi

The test will be H0 : γ = 0 with critical value set as t(N − 3)
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