Example 1 of econometric analysis: the Market Model

Susan Thomas IGIDR, Bombay

18 November, 2008

Susan Thomas Example 1 of econometric analysis: the Market Model

э

Recap: framework for estimating β_i

• We want to estimate the following linear relationship:

$$\mathbf{r}_i = \mathbf{r}_f + \beta_i (\mathbf{r}_M - \mathbf{r}_f)$$

Equivalent statement:

$$\mathbf{r}_i - \mathbf{r}_f = \beta_i (\mathbf{r}_M - \mathbf{r}_f)$$

• Form of the econometric model:

$$Y_i = \alpha + \beta_i X_i + \epsilon_i$$

What are the null hypotheses?

1. If
$$Y_i = r_i, X_i = r_M - r_f$$

 $H_0: \beta_i = 1; H_a: \beta \neq 1$
 $H_0: \alpha = r_f; H_a: \alpha \neq r_f - \text{ not well posed}$
2. If $Y_i = r_i - r_f, X_i = r_M - r_f$
 $H_0: \beta_i = 1; H_a: \beta \neq 1$
 $H_0: \alpha = 0; H_a: \alpha \neq 0$

Estimate the market model for a security

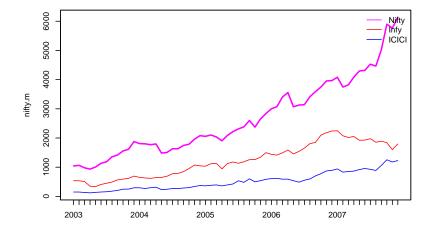
- Time period for analysis: Jan 1 2003 to Dec 31 2007
- Frequency of data: monthly
- Fully diversified portfolio: NSE-50 market index.
- Any stock it is not important that it is in the stock index or not.

Our examples: Infosys Technologies, ICICI Bank

• Calculate monthly returns for the stocks and the index:

$$r_i = 100 * (\log P_1 - \log P_0)$$

where P_0 is the price at the start of the month. P_1 is the price at the end of the month.

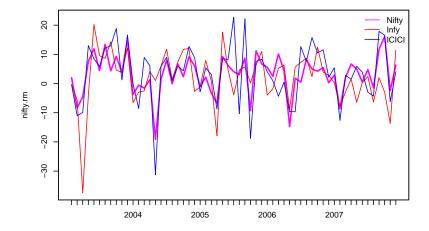

- r_f is the three-month interest rate set by the RBI.
- Use OLS to estimate beta for Infosys and ICICI Bank assuming the single index market model is the best model for *E*(*r_i*).

Regression results for ICICI Bank returns

Susan Thomas Example 1 of econometric analysis: the Market Model

э

Recap: Distribution of prices

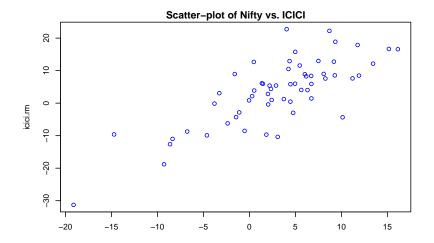


Susan Thomas Example 1 of econometric analysis: the Market Model

ъ

æ

Recap: Distribution of ∂ returns


Statistical tests for normality: ICICI Bank

• Summary statistics for monthly data

	ICICI Bank
Mean	3.5629
Std. Dev.	10.1755
Skewness	-0.7185
	(5.16)
Kurtosis	3.975
	(2.377)
N = 60	

- $\chi^2(1), 0.05\%$ level of significance = 3.84, 0.01% = 6.63
- $\chi^2(2), 0.05\%$ level of significance = 5.99, 0.01% = 9.21
- Significantly different from a normal distribution will it affect the OLS estimation? How?
- Will MLE be a better estimation tool here? Not if we don't know the exact form of the distribution.

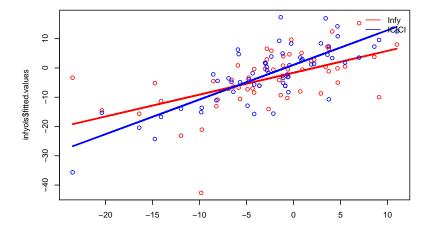
Distribution of Nifty returns vs. ICICI Bank returns

ICICI Bank regression results

• ICICI Bank: $r_{\text{icicibank}} - r_f = \alpha_0 + \beta_{\text{icicibank}}(r_{\text{Nifty}} - r_f) + \epsilon$

• Regression results:

	ICICI Bank		Infosys Tech	
	Estimate	Std. Error	Estimate	Std. Error
(Intercept)	1.0513	0.9030	-1.6413	1.0974
Market returns	1.1837	0.1247	0.7474	0.1516
F-stat(1, 57) =	90.05	24.31		
prob value =	2.5e-13	7.5e-6		
R ² =	0.6124	0.2989		
Adj R ² =	0.6056	0.2866		
$\sigma_{\epsilon}^2 =$	7.757		6.383	


• Model: $E(r_{\text{icicibank}} - r_f) = 1.1837(r_{\text{Nifty}} - r_f)$

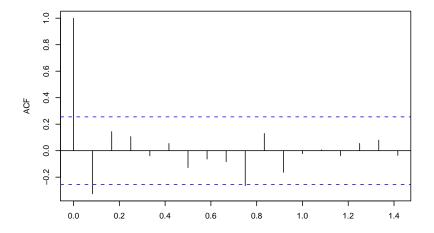
▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

- On average, ICICI Bank price move by 1.2% when the market returns are 1%.
 In comparison: on average, Infosys returns move 0.75% with a 1% move in the market portfolio.
- Market returns captures 61% of the variation in ICICI Bank returns.

But it captures only 30% of variation in Infosys Technologies.

The regression lines for Infosys Tech and ICICI Bank

Error analysis for ICICI Bank


• Characteristics of ϵ .

	~ ~ ~	
	Y	ϵ
Mean	3.562	0.000
Std. Dev. 10.176		
Skewness	-0.718	0.106
	(5.162)	(0.113)
Kurtosis	3.975	3.442
	(2.377)	(0.488)
60 observations		

- Correlation between $(r_M, \epsilon) = -6.93e 18$
- Serial dependence in *ε*: autocorrelation coefficient function of *ε*.

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

Serial dependence in errors

Susan Thomas Example 1 of econometric analysis: the Market Model

ъ

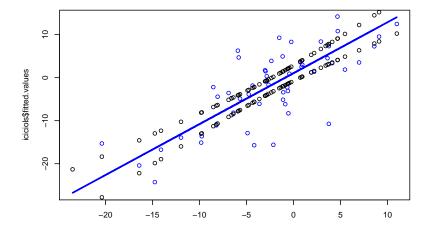
э

Model prediction for ICICI Bank returns

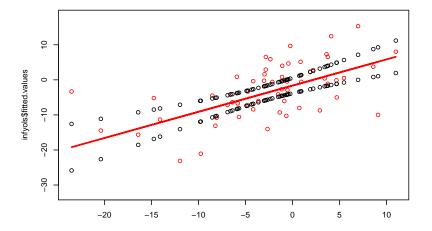
•
$$E(r_i - r_f) = \hat{\alpha} + \hat{\beta}_i E(r_M - r_f)$$

 For a move in excess market index returns of 1%, what is the expected excess returns on ICICI Bank?

•
$$\hat{\beta}_i = 1.18, (r_M - r_f) = 1\%$$


- $E(r_i r_f) = 1.18 * 1 = 1.0513 + 1.18 = 2.2313\%$
- The 95% confidence interval: 0.3198 4.1502%
- Suppose we ignore the â.
- Then, $E(r_i r_f) = 1.18\%$ with $var(E(r_i r_f))$

$$1 \times \operatorname{var}(\hat{\beta}_i) = \sigma_e / \sqrt{N} \sigma_X = 0.1215$$


• Then, the 95% confidence interval becomes: 0.9417 – 1.418

< 回 > < 回 > < 回 > … 回

Predictions and the 95% CI bands: ICICI Bank

Predictions and the 95% CI bands: Infosys Tech

HW: Model prediction for Infosys Technologies

- HW: For the same period data, what is the E(r_i r_f) for Infosys Technologies?
- What is the 95% CI for the prediction with and without the α ?
- Find the monthly returns that Infosys Technologies actually obtained in January 2008.
 How well did the model's 95% prediction fare?

Transformation of the data and implication on the results

Changing the scale of the dependent variable

- We have the model: $Y_t = \alpha + \beta X_t + u_t$
- What if we accidentally create $Y_{t^*} = 1000 Y_t$ and run the regression instead?
- Impact: New equation on $Y_{t^*} = 1000 Y_t$

$$\Rightarrow Y_{t^*} = 1000(\alpha + \beta X_t + u_t)$$

= 1000\alpha + 1000\beta X_t + 1000\u03c0_t
$$\Rightarrow Y_{t^*} = \alpha' + \beta'_i X_t + u_{t^*}$$

$$\Rightarrow \hat{\alpha}' = 1000\hat{\alpha}$$

$$\hat{\beta}' = 1000\hat{\beta}$$

$$\hat{\sigma}_{u_t^*} = 1000\sigma_{u_t}$$

- The impact on the regression results:
 - Standard error of regression ×1000
 - Standard error of regression co-efficient ×1000
 - But t-stats, *R*², F-stats are not changed because they are ratios. Scale measures cancel out.
- **Conclusion:** When *Y_t* is changed by K, values of ALL required co-efficients by K.

Changing the scale of one independent variable

• Say we mistakenly transform $X'_t = \frac{X_t}{100}$ • Impact on the estimation:

$$Y_t = \alpha + \beta X_t + u_t$$

= $\alpha + \beta_{100} \frac{X_t}{100} + u_t$
= $\alpha + \beta' X'_t + u_t$

• $\hat{\beta}' = 100\hat{\beta}$

- Standard Error of $\hat{\beta}'$ also increases by 100
- But t-stats remain unchanged.

• Conclusion:

- Only the transformed variable's coefficient is affected.
- I-stats, ESS, R², F all remain unchanged
- Important for data combinations with diverse ranges of scale: Some X might take real values from 0 to 1. Simultaneously others can take values above 10,000.

Also useful to detect errors during data entry: the scale of

estimated coefficients appear different from expected values.

Example: Market model for Infosys against $(r_m - r_f)/100$

•
$$Y_t = (r_{infosys} - r_f)$$

•
$$X_t = (r_{\text{nifty}} - r_f)$$

•
$$X_t^* = (r_{\text{nifty}} - r_f)/100$$

Statistical features:

	X_t	X_t^*
Mean	-2.6922	-0.0269
Std Dev	6.777	0.06777
Skewness	-0.703	-0.7033
Kurtosis	3.8276	3.8276

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

	Infosys Tech			
	Estimate	Std. Error	Estimate	Std. Error
Intercept	-1.6413	1.0974	-1.50	0.1403
Market returns*	74.7377	15.1594	4.93	0.0000
F-stat(1, 57) = 90	= 90.05			
prob value = 2.5e-13				
$R^2 = 0.2989$				
$Adj R^2 = 0.2866$				
Residual Std. Er	r: 7.825			

・ロト ・回ト ・ヨト ・ヨト

æ

Example: Market model for Infosys with $(r_{infosys} - r_f)/100$

•
$$Y_t = (r_{infosys} - r_f)$$

• $Y_t^* = (r_{infosys} - r_f)/100$

- $X_t = (r_{\text{nifty}} r_f)$
- Statistical features:

	Y_t	Y_t^*
Mean	-2.6922	-0.0269
Std Dev	6.777	0.06777
Skewness	-0.703	-0.7033
Kurtosis	3.8276	3.8276

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

	Infosys Tech			
	Estimate	Std. Error	Estimate	Std. Error
Intercept	-1.6413	1.0974	-1.50	0.1403
Market returns*	74.7377	15.1594	4.93	0.0000
F-stat(1, 57) = 90	= 90.05			
prob value = 2.5e-13				
$R^2 = 0.2989$				
$Adj R^2 = 0.2866$				
Residual Std. Er	r: 7.825			

・ロト ・回ト ・ヨト ・ヨト

æ