Testing for structural changes in the Market Model

Susan Thomas IGIDR, Bombay

19 November, 2008

Susan Thomas Testing for structural changes in the Market Model

э

Recap: framework for estimating β_i

• We want to estimate the following linear relationship:

$$r_i - r_f = \beta_i (r_M - r_f)$$

• Form of the econometric model:

$$Y_i = \alpha + \beta_i X_i + \epsilon_i$$

• For the market model, the null hypotheses:

$$H_0: \beta_i = 1; H_a: \beta \neq 1$$
$$H_0: \alpha = 0; H_a: \alpha \neq 0$$

Model assumption: β_i is constant, α is constant in the sample.

通 とくほ とくほ とう

Testing for change in parameters in the sample

- Defining structural change in the data.
- Example, the data is generated out of the "real" data as follows.
 - There are two sections of the data $N = n_1 + n_2$ such that:

$$Y_i = \alpha_1 + \beta_1 X_i + e_i \text{ for period } 1$$

$$Y_i = \alpha_2 + \beta_2 X_i + e_i \text{ for period } 2$$

- Opposed to the model: $Y_i = \alpha + \beta X_i + e_i$ for the whole period.
- The first set of two equations become the "unrestricted" model, *M*_U and the second becomes the "restricted" model, *M*_R.
- If the "restriction" does not hold, it is equivalent to saying that there is structural change in the DGP.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Operationalising the test for structural change in the model

- Test: compare model variance $\sigma_{M_u}^2$ and $\sigma_{M_B}^2$
- If $\sigma_{M_U}^2 < \sigma_{M_R}^2$ then there is structural change in the sample. • $\sigma_{M_R}^2 = \sum_{i=1}^{N} (Y_i - \alpha - \beta X_i)^2$ • $\sigma_{M_U}^2 = \sum_{i=1}^{n_1} (Y_i - \alpha_1 - \beta_1 X_i)^2 + \sum_{i=n_1}^{N} (Y_i - \alpha_2 - \beta_2 X_i)^2$ • Test: F-test

$$\frac{(\sigma_{M_R}^2 - \sigma_{M_U}^2)/k}{\sigma_{M_U}^2/(n_1 + n_2 - 2K)} \sim F(k, N - 2k)$$

where number of restrictions, m = k.

(雪) (ヨ) (ヨ)

Case I: allowing only the intercept to change

• Model: $Y_i = \alpha + \beta_1 X_{1,i} + \beta_2 X_{2,i} + \beta_3 X_{3,i} + \epsilon_i$

Unrestricted model: for samples n₁, n₂

$$\begin{aligned} Y_i &= \alpha_1 + \beta_{11} X_{1,i} + \beta_{21} X_{2,i} + \beta_{31} X_{3,i} + \epsilon_{i1} \\ Y_i &= \alpha_2 + \beta_{12} X_{1,i} + \beta_{22} X_{2,i} + \beta_{32} X_{3,i} + \epsilon_{i2} \end{aligned}$$

Restricted model: n₁, n₂

$$\begin{array}{rcl} Y_i &=& \alpha_1 + \beta_1 X_{1,i} + \beta_2 X_{2,i} + \beta_3 X_{3,i} + e_{i1} \\ Y_i &=& \alpha_2 + \beta_1 X_{1,i} + \beta_2 X_{2,i} + \beta_3 X_{3,i} + e_{i2} \end{array}$$

(雪) (ヨ) (ヨ)

Case I: allowing only the intercept to change

What is the test statistic?

$$M_R = \sum_{i=1}^{n_1} e_{i1}^2 + \sum_{i=1}^{n_1} e_{i2}^2$$

$$M_U = \sum_{i=1}^{n_1} \epsilon_{i1}^2 + \sum_{i=1}^{n_1} \epsilon_{i2}^2$$

$$F = \frac{(M_R - M_U)/(2(k-1))}{M_U/(n_1 + n_2 - 2k)}$$

- Number of parameters in unrestricted model: 8
- Number of parameters in restricted model: 5
- Number of restrictions = 3
- Critical value: F(3, N 8)

프 에 에 프 어 - -

Structural breaks in the market model for Tata Steel

Susan Thomas Testing for structural changes in the Market Model

ъ

ъ

Tata Steel prices

Susan Thomas Testing for structural changes in the Market Model

< • • • • •

포 🛌 포

Tata Steel vs. Nifty returns

Susan Thomas Testing for structural changes in the Market Model

ъ

	Tata Steel
Mean	3.968
Std. Dev.	11.898
Skewness	-0.105
	(0.108)
Kurtosis	2.432
	(0.793)
N = 59	

- $\chi^2(1), 0.05\%$ level of significance = 3.84, 0.01% = 6.63
- $\chi^2(2), 0.05\%$ level of significance = 5.99, 0.01% = 9.21
- Not significantly different from a normal.

(過) (ヨ) (ヨ)

Tata Steel regression on Nifty

• Regression:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	2.0192	1.0377	1.95	0.0566	
$r_M - r_f$	1.3926	0.1433	9.72	0.0000	
F-stat(1, 57) = 94.39				
prob value = 1.072e-13					
R-squared = 0.6235					
Adjusted R-squared: 0.6169					

• Model:
$$E(r_{\text{tata-steel}} - r_f) = 1.393E(r_{\text{Nifty}} - r_f)$$

▲圖 → ▲ 国 → ▲ 国 → □

æ

Testing for a structural break in Tata steel beta

- Economic hypothesis: The Tata Steel–Corus deal which was signed in January 2007 caused a shift in the beta of Tata Steel.
- Operationalising the test: there is a "structural break" in the market model for returns on Tata Steel before and after March 2006.
- Unrestricted model:

$$(r_i - r_f) = \alpha^* + \beta_i^* E(r_M - r_f) + e_i$$
 period: 2003-2006
 $(r_i - r_f) = \alpha^{**} + \beta_i^{**} E(r_M - r_f) + e_i$ period: 2007-

Restricted model:

 $(\mathbf{r}_i - \mathbf{r}_f) = \alpha + \beta_i \mathbf{E} (\mathbf{r}_M - \mathbf{r}_f) + \epsilon_i$ whole period

- Number of parameters in unrestricted model: 4
- Number of parameters in restricted model: 2
- Number of restrictions = 2
- Critical value: F(2, N 4)

イロト 不得 とくほ とくほ とうほ

Testing for a structural break in Tata steel beta

• Unrestricted model variance:

Period 1 RSS,
$$\sigma_1^2 = 1941.107$$

Period 2 RSS, $\sigma_2^2 = 1172.618$
 $\sigma_{M_U}^2 = 3113.725$

• Restricted model variance:

$$\sigma^2_{M_R}$$
 = 3120.476

Test statistic:

$$\frac{(3120.476 - 3113.725)/2}{3113.725/(59 - 4)} = 0.0596$$

- Critical value:
 - F(2,55) = 3.168,5% level of significance.
 - F(2,55) = 5.021, 1% level of significance.

Reject a structural break happened in March 2006.

F-stats for a series of possible structural breaks in the Tata Steel market model

Susan Thomas Testing for structural changes in the Market Model

A multi-factor model for Infosys Technologies

Susan Thomas Testing for structural changes in the Market Model

프 🖌 🛪 프 🕨

ъ

Model estimation for Infy beta

•
$$r_{infy} - r_f = \alpha_0 + \beta_{infy}(r_{Nifty} - r_f) + \epsilon$$

Regression Results:

	Estimate	Std. Error	t-value	Prob value	
(Intercept)	-1.6413	1.0974	-1.496	0.140	
Market returns	0.7474	0.1516	4.930	7.45e-06	
	F-stat(1, 57) = 24.31				
	prob value = 7.5e-6				
	R-squared = 0.2989				
	Adjusted R-squared: 0.2866				

• Model: $E(r_{infy} - r_f) = 0.747 E(r_{Nifty} - r_f)$

(雪) (ヨ) (ヨ)

3

Multiple variables regression for Infosys returns

- Alternative model with multiple variables explaining returns: APT
- Two variables deemed important in explaining security returns:
 - interest rate spread difference between short and long term rates
 - Foreign exchange fluctuations.
- Proposed model:

 $(r_{\text{infosys},t} - r_f) = \alpha + \beta_{\text{infosys}}(r_{M,t} - r_f) + \beta_{\text{fx}}F_t + \beta_{\text{spread}}S_t + e_t$

- Null hypotheses:
 - β_{fx} is significant. $H_0: \beta_{fx} = 0, H_A: \beta_{fx} \neq 0$
 - β_{spread} is insignificant. $H_0: \beta_{spread} = 0, H_A: \beta_{spread} \neq 0$

<ロ> (四) (四) (三) (三) (三)

Summary statistics for monthly data

	Nifty	Infy	FX-ret	Spread
Mean	3.0061	2.0449	-0.327	1.421
Std. Dev.	6.7305	9.0119	1.489	1.339
Skewness	-0.8148	-1.3728	-0.431	0.266
	(6.70)	(18.85)	(1.829)	(0.696)
Kurtosis	4.1742	7.6354	3.961	1.539
	(3.45)	(53.72)	(2.274)	(5.244)

Number of observations = 60 observations

- No serious problems of non-normality in the newly added variables.
- Note: the spread between the long and short rates are a "rate". This tends to be a non-negative number.

Plot of Infy returns vs. fx returns

ъ

э

Plot of Infy returns vs. spread

ъ

э

The correlation matrix for the dataset is:

	Infy	Nifty	FX-ret	Spread
Infy	1.00	0.52	-0.05	0.07
Nifty.rm	0.52	1.00	-0.39	-0.04
FX-ret	-0.05	-0.39	1.00	0.11
Spread.m	0.07	-0.04	0.11	1.00

ヘロト 人間 ト ヘヨト ヘヨト

ъ

Regression results on the multifactor model no.1 for Infosys returns

Regression results, M#1:

	Estimate	Std. Error	t-value	Prob value	
(Intercept)	-1.6413	1.0974	-1.496	0.140	
Market returns	0.826	0.1616	5.110	4.18e-06	
FX fluctations	1.1418	0.7373	1.549	0.127	
Spread	0.6027	0.7697	0.783	0.437	
	F-stat(3, 55) = 9.46				
	prob value = 3.879e-05				
	R-squared = 0.3404				
	Adjusted R-squared: 0.3044				
	Residual std.err.: 7.727 on 55 dof				

通 と く ヨ と く ヨ と

Regression results on the multifactor model for Infosys returns

- Neither the INR-USD rate changes nor the US interest rate spreads are influential in explaining the monthly returns on Infosys.
- The R² has gone from 0.2989 (SIMM) to 0.3404.
 But the "adjusted R²" has gone from 0.2866 to 0.3044 a much smaller difference.
- The adjusted *R*² is calculated as:

$$\bar{R}^2 = 1 - \frac{(N-1)}{(N-K)}(1-R^2)$$

The larger the "K", the greater has to be the increase in R^2 .

 The F-statistic is still significant – but the base model is the pure intercept model.

Regression results on the multifactor model#2 for Infosys returns

Regression results, M#2:

	Estimate	Std. Error	t-value	Prob value	
(Intercept)	-0.9813	1.1483	-0.85	0.3964	
Market returns	0.8432	0.1596	5.28	0.0000	
FX fluctuations	1.2287	0.7264	1.69	0.0963	
	F-stat(3, 56) = 13.98				
	prob value = 1.189e-05				
	R-squared = 0.3330				
	Adjusted R-squared: 0.3092				
	Residual Std.Err: 7.7 on 56 dof				

ヨト イヨト

Regression results on the multifactor model#3 for Infosys returns

Regression results, M#3:

	Estimate	Std. Error	t-value	Pro
(Intercept)	-1.6756	2.4235	-0.69	
Market returns	0.7327	0.1530	4.79	
FX forward rate changes	-0.4755	0.7824	-0.61	
Spread	0.6006	0.8303	0.72	
	F-stat(3, 5	55) = 8.478		
	prob value = 0.00019			
	R-squared = 0.3160			
	Adjusted I	R-squared: ().2789	

• Here, the adjusted *R*² is *lower* than the adjusted *R*² of the SIMM.

< ∃→

• The correlation matrix for the dataset is:

	Infy	Nifty	FX premium	Spread
Infy	1.00	0.52	-0.07	0.07
Nifty	0.52	1.00	0.04	-0.04
FX premium	-0.07	0.04	1.00	-0.36
Spread	0.07	-0.04	-0.36	1.00

・ 同 ト ・ ヨ ト ・ ヨ ト …

ъ

- If Nifty returns in January 2008 is -17.803, INR-USD was -0.5% and $r_f = 7.085$, what is the forecast for returns on Infy?
- What is the 95% confidence interval for this?

★ 문 ► ★ 문 ►