Dummy Variables

Susan Thomas
IGIDR, Bombay

24 November, 2008

The problem of structural change

- Model: $Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\epsilon_{i}$
- Structural change, type 1: change in parameters in time.

$$
\begin{aligned}
Y_{i} & =\alpha_{1}+\beta_{1} X_{i}+e_{1 i} \text { for period } 1 \\
Y_{i} & =\alpha_{2}+\beta_{2} X_{i}+e_{2 i} \text { for period } 2
\end{aligned}
$$

Solution: for a given "break point" τ, $\sigma_{\text {unrestricted }}^{2}=\sum^{n 1} e_{1 i}^{2}+\sum^{n 2} e_{2 i}^{2}$ vs. $\sigma_{\text {restricted }}^{2}=\sum^{N=n 1+n 2} \epsilon_{i}^{2}$
Critical value: $\mathrm{F}(\mathrm{k}, \mathrm{N}-2 \mathrm{k})$

- Other types of structural change
- Type 2: change in constant terms (dummy variables)
- Type 3: change in distribution of errors
- Type 4: change in sets of coefficients

Testing for change in parameters in the sample

Type 2: change in constant terms

- A dummy variable, D_{k} is a binary variable which takes the value of 0 or 1 when the condition is "false" or "true". Example: $D_{k}=0$ if a boy child is born, $D_{k}=1$ if a girl child is born.
- Dummies are useful in changing the structure of the model depending upon the value of some conditioning variable.
- The simplest is to change the "intercept" term of the regression model.
Example: $Y_{i}=$ weight, $X_{i}=$ height

$$
\begin{aligned}
& Y_{i}=\alpha_{1}+\beta X_{i}+e_{1 i}, i=\text { female } \\
& Y_{i}=\alpha_{2}+\beta X_{i}+e_{2 i}, i=\text { male }
\end{aligned}
$$

Type 2: change in constant terms

Change in intercept: test of mean

- Data: Group $1 Y_{i}=\mu+\epsilon_{i}$ Group $2 Y_{i}=(\mu+\delta)+\epsilon_{i}$ $\mu=\mu_{G_{1}}, \mu+\delta=\mu_{G_{2}}$ or $\delta=\mu_{G_{2}}-\mu_{G_{1}}$
- The regression can be estimated as:

$$
Y_{i}=\mu+\delta D_{i}+\epsilon_{i}
$$

where $D_{i}=0$ for Group 1, $D_{i}=1$ for Group 2.

- Alternative model: $Y_{i}=\mu_{1} G_{1}+\mu_{2} G_{2}+e_{i}$

$$
\begin{aligned}
& G_{1}=1, \text { ifi }=\text { Group } 1, \text { otherwise } G_{1}=0 \\
& G_{2}=1, \text { ifi }=\text { Group } 2, \text { otherwise } G_{2}=0
\end{aligned}
$$

- However, H_{0} in model 2 cannot ask whether $\alpha_{1}, \alpha_{2}=0$. Advantage of the dummy variable model: $H_{0}: \delta=\mu_{G_{1}}-\mu_{G_{2}}$ is a well posed test of whether the mean of G_{1}, G_{2} are different.

Change in intercept: test of mean

- Data frame for model 1

$$
\begin{aligned}
{\left[\begin{array}{ll}
y & x
\end{array}\right] } & =\left[\begin{array}{ccc}
Y_{1} & 1 & 0 \\
Y_{2} & 1 & 0 \\
\ldots & \ldots & \ldots \\
Y_{n_{1}} & 1 & 0 \\
Y_{n_{1}+1} & 1 & 1 \\
Y_{n_{1}+2} & 1 & 1 \\
\ldots & \cdots & \ldots \\
Y_{N} & 1 & 1
\end{array}\right] \\
Y & =\left[\begin{array}{cc}
I_{n 1} & 0 \\
I_{n 2} & I_{n 2}
\end{array}\right]+\epsilon
\end{aligned}
$$

- OLS solution:

$$
\left[\begin{array}{l}
\hat{\mu} \\
\hat{\delta}
\end{array}\right]=\left[\begin{array}{ll}
N & n_{2} \\
n_{2} & n_{2}
\end{array}\right]^{-1}\left[\begin{array}{c}
n_{1} \bar{y}_{1}+n_{2} \bar{y}_{2} \\
n_{2} \bar{y}_{2}
\end{array}\right]=\left[\begin{array}{c}
\bar{y}_{1} \\
\bar{y}_{2}-\bar{y}_{1}
\end{array}\right]
$$

- Use the normal equations of the OLS optimisation to show that

$$
\left[\begin{array}{l}
\hat{\mu} \\
\hat{\delta}
\end{array}\right]=\left[\begin{array}{c}
\bar{y}_{1} \\
\bar{y}_{2}-\bar{y}_{1}
\end{array}\right]
$$

- What is the standard error of $\hat{\mu}, \hat{\delta}$?

Change in intercept: test of mean

- Data frame for model 2

$$
Y=\left[\begin{array}{cc}
I_{n 1} & 0 \\
0 & I_{n 2}
\end{array}\right]+\epsilon
$$

- OLS solution:

$$
\begin{aligned}
{\left[\begin{array}{l}
\hat{\mu}_{G_{1}} \\
\hat{\mu}_{G_{2}}
\end{array}\right] } & =\left[\begin{array}{cc}
n_{1} & 0 \\
0 & n_{2}
\end{array}\right]^{-1}\left[\begin{array}{l}
n_{1} \bar{y}_{1} \\
n_{2} \bar{y}_{2}
\end{array}\right]=\left[\begin{array}{l}
\bar{y}_{1} \\
\bar{y}_{2}
\end{array}\right] \\
{\left[\begin{array}{l}
\sigma_{\hat{\mu}_{G_{1}}} \\
\sigma_{\hat{\mu}_{G_{2}}}
\end{array}\right] } & =\left[\begin{array}{l}
\sigma_{\epsilon} / \sqrt{n 1} \\
\sigma_{\epsilon} / \sqrt{n 2}
\end{array}\right]
\end{aligned}
$$

Model choices when dealing with dummy variables

- Model 1: $Y_{i}=\mu+\delta D_{i}+\epsilon_{i}$
- Model 2: $Y_{i}=\mu_{G_{1}} D_{G_{1}}+\mu_{G_{2}} D_{G_{2}}+e_{i}$
- Incorrect model: $Y_{i}=\alpha+\mu_{G_{1}} D_{G_{1}}+\mu_{G_{2}} D_{G_{2}}+e_{i}$
- Data matrix for the models:

$$
\begin{gathered}
\text { Model 1 } \\
{\left[\begin{array}{cc}
I_{n 1} & 0 \\
I_{n 2} & I_{n 2}
\end{array}\right]}
\end{gathered} \begin{gathered}
\text { Model 2 } \\
{\left[\begin{array}{cc}
I_{n 1} & 0 \\
0 & I_{n 2}
\end{array}\right]}
\end{gathered} \begin{gathered}
\text { Incorrect model } \\
{\left[\begin{array}{lcc}
I_{n 1} & I_{n 1} & 0 \\
I_{n 2} & 0 & I_{n 2}
\end{array}\right]}
\end{gathered}
$$

- In the third data matrix, the sum of the second and third columns add up to the first.
This means the inverse of $\left(X^{\prime} X\right)^{-1}$ cannot be calculated. Which in turn means that three coefficents cannot be estimated.
- Problem of multicollinearity: with dummy variables, coefficients for a "comprehensive" set of dummies cannot be estimated simultaneously with an intercept. Model can either contain a comprehesive set of dummy variables or an intercept.

Modelling the index of industrial production, IIP

Seasonality in the IIP data

- Data has monthly frequency from April 1990 to Sep 2008
- Appears to have an annual trend - linear? non-linear?
- Appears to have "seasonality". Expected patterns at regular intervals.
- Model suggestions:
- A different level for different years: year trend term Captures a level of IIP for a given year. For example,trend is denoted as " 1 " for 1990, " 2 " for 1991, " 3 " for 1992, etc.
- A different level for different months: month dummies Captures a level of IIP for a given month in a year. Each month has a dummy. For example, Jan_{t} is " 1 " for January in any month, and " 0 " otherwise.
- Model 1:

$$
I I P_{t}=\alpha_{0}+\alpha_{1} Y_{t}+\beta_{1} \text { Jan }_{t}+\beta_{2} \text { Feb }_{t}+\ldots+\beta_{11} \text { Nov }_{t}+\epsilon_{t}
$$

Model 1

- Regression results

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
(Intercept)	59.5827	1.9685	30.27	0.0000
year	10.0038	0.1736	57.63	0.0000
Residual $\mathrm{SE}=0.0530$				
F-stat $(1,220)=3322$				
prob value $=2.2 \mathrm{e}-16$				
R-squared $=0.9379$				
Adjusted R-squared: 0.9376				

Explained vs. Actual data

Behaviour of serial dependence in residuals

- Regression results

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
(Intercept)	59.4567	2.7854	21.35	0.0000
year	10.0058	0.1677	59.68	0.0000
jan	-3.6010	3.8334	-0.94	0.3486
feb	10.1878	3.8334	2.66	0.0085
mar	-4.3148	3.7649	-1.15	0.2531
may	-3.5201	3.7649	-0.93	0.3509
jun	-1.9253	3.7649	-0.51	0.6096
jul	-2.3411	3.7649	-0.62	0.5347
aug	-0.5201	3.7649	-0.14	0.8903
sep	-2.2230	3.8352	-0.58	0.5628
oct	0.2770	3.8352	0.07	0.9425
nov	9.9826	3.8352	2.60	0.0099

Residual SE $=0.04730$
F-stat(11, 210) $=3327.3$
prob value $=2.2 \mathrm{e}-16$
R-squared $=0.9449$
Adjusted R-squared: 0.9420

Interpreting the model

- The omitted dummy is "Dec".
- Therefore, the 'jan" coefficient value of -3.601 is the additional shift for January in addition to the value for December. In this model, the January effect is:

$$
59.4567-3.601=55.8557
$$

- From the model, the IIP level for January 1991 is

$$
I I P_{\text {jan } 1991}=59.4567+10.0058 * 2-3.601=75.8673
$$

Explained vs. Actual data

Behaviour of serial dependence in residuals

- The trend and seasonality is non-linear
- Model suggestions:
- Fit the model on log(IIP)
- Model 2:
$\log I I P_{t}=\alpha_{0}+\alpha_{1} Y_{t}+\beta_{1}$ Jan $_{t}+\beta_{2}$ Feb $_{t}+\ldots+\beta_{11}$ Nov $_{t}+\epsilon_{t}$

Simple model 2

- Regression results:

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$
(Intercept)	4.3804	0.0075	580.80	0.0000
year	0.0634	0.0007	95.27	0.0000
Residual SE $=0.05301$				
F-stat $(1,220)=9077$				
prob value $=2.2 e-16$				
R-squared $=0.9763$				
Adjusted R-squared: 0.9762				

Explained vs. Actual data

- Regression results:

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
(Intercept)	4.3788	0.0099	443.15	0.0000
year	0.0634	0.0006	106.56	0.0000
jan	-0.0191	0.0136	-1.40	0.1621
feb	0.0554	0.0136	4.07	0.0001
mar	-0.0205	0.0134	-1.53	0.1267
may	-0.0193	0.0134	-1.44	0.1502
jun	-0.0103	0.0134	-0.77	0.4429
jul	-0.0149	0.0134	-1.11	0.2664
aug	-0.0057	0.0134	-0.43	0.6681
sep	-0.0106	0.0136	-0.78	0.4376
oct	0.0063	0.0136	0.46	0.6436
nov	0.0587	0.0136	4.31	0.0000

Residual SE $=0.04732$
F-stat $(11,210)=1042$
prob value $=2.2 \mathrm{e}-16$
R-squared $=0.9820$
Adjusted R-squared: 0.9811

Explained vs. Actual data

- There is still a lot of serial dependence in the residuals of the model.
This means that there is yet a lot of variance about the IIP which is to be captured.
- The dummy variables capture a
- The linearity is better captured by log changes in IIP from the previous year.

$$
y_{t}=\log \left(I I P_{t}, y_{1}\right)-\log \left(I I P_{t}, y_{0}\right)
$$

This is a standard data transformation used in the econometric literature for seasonally adjusting macro-economic data.

- Model suggestions:
- There is a trend.
- There is seasonality.
- Model 2: $\log I I P_{t, y 1} / I I P_{t, y 0}=$

$$
\alpha_{0}+\alpha_{1} Y_{t}+\beta_{1} \text { Jan }_{t}+\beta_{2} \text { Feb }_{t}+\ldots+\beta_{11} \text { Nov }_{t}+\epsilon_{t}
$$

IIP - YoY growth series

IIP - YoY growth series

Simple model 3

- Regression results:

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
(Intercept)	4.2634	0.6553	6.51	0.0000
gyear	0.2176	0.0562	3.87	0.0001
Residual SE $=4.124$				
F-stat $(1,208)=14.98$				
prob value $=1.45 \mathrm{e}-4$				
R-squared $=0.06718$				
Adjusted R-squared: 0.06269				

Explained vs. Actual data

- Regression results:

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
(Intercept)	4.2099	0.9417	4.47	0.0000
year	0.2188	0.0575	3.81	0.0002
jan	0.2393	1.2437	0.19	0.8476
feb	0.4629	1.2437	0.37	0.7102
mar	-0.5066	1.2202	-0.42	0.6785
may	-0.5438	1.2202	-0.45	0.6563
jun	-0.2688	1.2202	-0.22	0.8259
jul	-0.3038	1.2202	-0.25	0.8036
aug	0.0545	1.2202	0.04	0.9644
sep	0.3346	1.2443	0.27	0.7883
oct	0.2540	1.2443	0.20	0.8385
nov	0.8752	1.2443	0.70	0.4827

Residual SE $=4.207$
F-stat $(11,198)=1.479$
prob value $=0.1415$
R-squared $=0.0759$
Adjusted R-squared: 0.0246

Explained vs. Actual data

Model 4: an autoregressive model for IIP

- Time series models use information from previous periods of own data to explain the next.
- Example, an autoregressive model for IIP would take the form:

$$
I I P_{t}=\alpha+\beta_{1} I I P_{t-1}+\epsilon_{t}
$$

This is called the Autoregressive model (AR) of order 1 because it has only one previous period variable as the explanatory variable for $I I P_{t}$.

- More generic forms of AR models are:

$$
I I P_{t}=\alpha+\beta_{1} I I P_{t-1}+\ldots+\beta_{k} I I P_{t-k}+\epsilon_{t}
$$

This is an $A R(k)$ model with IIP from " k " previous periods to explain IIP ${ }_{t}$.

Model 4: an autoregressive model for IIP

- Model for yoy-growth in IIP:

$$
\begin{aligned}
& \text { giip }_{t}=6.2819+0.5174 \text { giip }_{t-1}+0.3524 \text { giip }_{t-2}+0.0217 \text { giip }_{t-3} \\
& -0.0052 \text { gii }_{t-4}-0.0125 \text { gií }_{t-5}-0.0351 \text { giip }_{t-6}+0.0452 \text { giip }_{t-7} \\
& -0.0499 \text { giip }_{t-8}-0.0318 \text { gií }_{t-9}-0.0291 \text { gii }_{t-10}+0.1101 \text { giip }_{t-11} \\
& -0.2506 \text { giip }_{t-12}+0.2932 \text { gií }_{t-13}+0.1812 \text { giip }_{t-14}-0.0402 \text { giip }_{t-15} \\
& -0.2257 \text { giip }_{t-16}+\epsilon_{t} \\
& \sigma_{\epsilon}=2.4385 \\
& \sigma_{\text {giip }}=4.2594
\end{aligned}
$$

Explained vs. Actual data

Dependence in residual data

Dependence in variance of residual data

Cross-plot of giip vs. residuals

Cross-plot of giip vs. residuals-squared

