Dummy Variables

Susan Thomas IGIDR, Bombay

24 November, 2008

Susan Thomas Dummy Variables

(日) (四) (日) (日) (日)

2

The problem of structural change

• Model:
$$Y_i = \beta_0 + \beta_1 X_{1i} + \epsilon_i$$

• Structural change, type 1: change in parameters in time.

$$Y_i = \alpha_1 + \beta_1 X_i + e_{1i} \text{ for period } 1$$

$$Y_i = \alpha_2 + \beta_2 X_i + e_{2i} \text{ for period } 2$$

Solution: for a given "break point" τ , $\sigma_{\text{unrestricted}}^2 = \sum_{i}^{n_1} e_{1i}^2 + \sum_{i}^{n_2} e_{2i}^2 \text{ vs.} \sigma_{\text{restricted}}^2 = \sum_{i}^{N=n_1+n_2} \epsilon_i^2$ Critical value: F(k, N - 2k)

- Other types of structural change
 - Type 2: change in constant terms (dummy variables)
 - Type 3: change in distribution of errors
 - Type 4: change in sets of coefficients

・ロト ・四ト ・ヨト ・ヨト

Testing for change in parameters in the sample

Type 2: change in constant terms

- A dummy variable, D_k is a binary variable which takes the value of 0 or 1 when the condition is "false" or "true". Example: $D_k = 0$ if a boy child is born, $D_k = 1$ if a girl child is born.
- Dummies are useful in changing the structure of the model depending upon the value of some conditioning variable.
- The simplest is to change the "intercept" term of the regression model.
 Example: Y_i = weight, X_i = height

$$Y_i = \alpha_1 + \beta X_i + e_{1i}, i = \text{female}$$

$$Y_i = \alpha_2 + \beta X_i + e_{2i}, i = \text{male}$$

▲□▶▲圖▶▲圖▶▲圖▶ ▲圖 ● ④ ● ●

Type 2: change in constant terms

Susan Thomas Dummy Variables

Change in intercept: test of mean

- Data: Group 1 $Y_i = \mu + \epsilon_i$ Group 2 $Y_i = (\mu + \delta) + \epsilon_i$ $\mu = \mu_{G_1}, \mu + \delta = \mu_{G_2}$ or $\delta = \mu_{G_2} - \mu_{G_1}$
- The regression can be estimated as:

$$Y_i = \mu + \delta D_i + \epsilon_i$$

where $D_i = 0$ for Group 1, $D_i = 1$ for Group 2.

• Alternative model: $Y_i = \mu_1 G_1 + \mu_2 G_2 + e_i$

 $G_1 = 1$, *ifi* = Group 1, otherwise $G_1 = 0$ $G_2 = 1$, *ifi* = Group 2, otherwise $G_2 = 0$

 However, H₀ in model 2 cannot ask whether α₁, α₂ = 0. Advantage of the dummy variable model: H₀ : δ = μ_{G1} - μ_{G2} is a well posed test of whether the mean of G₁, G₂ are different.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Data frame for model 1

$$\begin{bmatrix} y & x \end{bmatrix} = \begin{bmatrix} Y_1 & 1 & 0 \\ Y_2 & 1 & 0 \\ \cdots & \cdots & \cdots \\ Y_{n_1} & 1 & 0 \\ Y_{n_1+1} & 1 & 1 \\ Y_{n_1+2} & 1 & 1 \\ \cdots & \cdots & \cdots \\ Y_N & 1 & 1 \end{bmatrix}$$
$$Y = \begin{bmatrix} I_{n1} & 0 \\ I_{n2} & I_{n2} \end{bmatrix} + \epsilon$$

OLS solution:

$$\begin{bmatrix} \hat{\mu} \\ \hat{\delta} \end{bmatrix} = \begin{bmatrix} N & n_2 \\ n_2 & n_2 \end{bmatrix}^{-1} \begin{bmatrix} n_1 \bar{y}_1 + n_2 \bar{y}_2 \\ n_2 \bar{y}_2 \end{bmatrix} = \begin{bmatrix} \bar{y}_1 \\ \bar{y}_2 - \bar{y}_1 \end{bmatrix}$$

ヘロト ヘ戸ト ヘヨト ヘヨト

Use the normal equations of the OLS optimisation to show that

$$\left[\begin{array}{c}\hat{\mu}\\\hat{\delta}\end{array}\right] = \left[\begin{array}{c}\bar{y}_1\\\bar{y}_2-\bar{y}_1\end{array}\right]$$

• What is the standard error of $\hat{\mu}, \hat{\delta}$?

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Change in intercept: test of mean

Data frame for model 2

$$Y = \begin{bmatrix} I_{n1} & 0 \\ 0 & I_{n2} \end{bmatrix} + \epsilon$$

OLS solution:

$$\begin{bmatrix} \hat{\mu}_{G_1} \\ \hat{\mu}_{G_2} \end{bmatrix} = \begin{bmatrix} n_1 & 0 \\ 0 & n_2 \end{bmatrix}^{-1} \begin{bmatrix} n_1 \bar{y}_1 \\ n_2 \bar{y}_2 \end{bmatrix} = \begin{bmatrix} \bar{y}_1 \\ \bar{y}_2 \end{bmatrix}$$
$$\begin{bmatrix} \sigma_{\hat{\mu}_{G_1}} \\ \sigma_{\hat{\mu}_{G_2}} \end{bmatrix} = \begin{bmatrix} \sigma_{\epsilon}/\sqrt{n1} \\ \sigma_{\epsilon}/\sqrt{n2} \end{bmatrix}$$

くロト (過) (目) (日)

Model choices when dealing with dummy variables

• Model 1:
$$Y_i = \mu + \delta D_i + \epsilon_i$$

- Model 2: $Y_i = \mu_{G_1} D_{G_1} + \mu_{G_2} D_{G_2} + e_i$
- Incorrect model: $Y_i = \alpha + \mu_{G_1} D_{G_1} + \mu_{G_2} D_{G_2} + e_i$
- Data matrix for the models:

Model 1		Moc	Model 2		Incorrect model		
	$\begin{bmatrix} 0 \\ l_{n2} \end{bmatrix}$	$\begin{bmatrix} I_{n1} \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ l_{n2} \end{bmatrix}$	$\begin{bmatrix} I_{n1} \\ I_{n2} \end{bmatrix}$	<i>I</i> _{n1}	$\begin{bmatrix} 0\\ l_{n2} \end{bmatrix}$	
L .112	·//2]	L	·//2]	L .112	· ·	·//2]	

• In the third data matrix, the sum of the second and third columns add up to the first.

This means the inverse of $(X'X)^{-1}$ cannot be calculated. Which in turn means that three coefficients cannot be estimated.

 Problem of multicollinearity: with dummy variables, coefficients for a "comprehensive" set of dummies cannot be estimated simultaneously with an intercept. Model can either contain a comprehesive set of dummy variables or an intercept.

Modelling the index of industrial production, IIP

포▶ 포

< 🗇 ▶

Seasonality in the IIP data

Features of IIP

- Data has monthly frequency from April 1990 to Sep 2008
- Appears to have an annual trend linear? non-linear?
- Appears to have "seasonality". Expected patterns at regular intervals.
- Model suggestions:
 - A different level for different years: year trend term Captures a level of IIP for a given year. For example,trend is denoted as "1" for 1990, "2" for 1991, "3" for 1992, etc.
 - A different level for different months: month dummies Captures a level of IIP for a given month in a year. Each month has a dummy. For example, Jan_t is "1" for January in any month, and "0" otherwise.

・ロン ・四 と ・ ヨ と ・ ヨ と …

Model 1:

 $IIP_{t} = \alpha_{0} + \alpha_{1}Y_{t} + \beta_{1}Jan_{t} + \beta_{2}Feb_{t} + \ldots + \beta_{11}Nov_{t} + \epsilon_{t}$

Regression results

	Estimate	Std. Error	t value	Pr(> t)		
(Intercept)	59.5827	1.9685	30.27	0.0000		
year	10.0038	0.1736	57.63	0.0000		
Residual SE = 0.0530						
F-stat(1, 220) = 3322						
prob value = 2.2e-16						
R-squared = 0.9379						
Adjusted R-squared: 0.9376						

Explained vs. Actual data

æ

э

Behaviour of serial dependence in residuals

Regression results

	Estimate	Std. Error	t value	Pr(> t)		
(Intercept)	59.4567	2.7854	21.35	0.0000		
year	10.0058	0.1677	59.68	0.0000		
jan	-3.6010	3.8334	-0.94	0.3486		
feb	10.1878	3.8334	2.66	0.0085		
mar	-4.3148	3.7649	-1.15	0.2531		
may	-3.5201	3.7649	-0.93	0.3509		
jun	-1.9253	3.7649	-0.51	0.6096		
jul	-2.3411	3.7649	-0.62	0.5347		
aug	-0.5201	3.7649	-0.14	0.8903		
sep	-2.2230	3.8352	-0.58	0.5628		
oct	0.2770	3.8352	0.07	0.9425		
nov	9.9826	3.8352	2.60	0.0099		
Residual SE = 0.04730						
F-stat(11, 210) = 3327.3						
prob value = 2.2e-16						
R-squared = 0.9449						
Adjusted R-squared: 0.9420						

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

- The omitted dummy is "Dec".
- Therefore, the 'jan" coefficient value of -3.601 is the additional shift for January in addition to the value for December. In this model, the January effect is:

59.4567 - 3.601 = 55.8557

• From the model, the IIP level for January 1991 is

 $IIP_{jan \ 1991} = 59.4567 + 10.0058 * 2 - 3.601 = 75.8673$

Explained vs. Actual data

< 口 > < 同

æ

э

Behaviour of serial dependence in residuals

æ

ъ

< 🗇 ▶

- The trend and seasonality is non-linear
- Model suggestions:
 - Fit the model on log(IIP)
- Model 2:

 $\log IIP_t = \alpha_0 + \alpha_1 Y_t + \beta_1 Jan_t + \beta_2 Feb_t + \ldots + \beta_{11} Nov_t + \epsilon_t$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

• Regression results:

	Estimate	Std. Error	t value	Pr(> t)			
(Intercept)	4.3804	0.0075	580.80	0.0000			
year	0.0634	0.0007	95.27	0.0000			
Residual SE = 0.05301							
F-stat(1, 220) = 9077							
prob value = 2.2e-16							
R-squared = 0.9763							
Adjusted R-squared: 0.9762							

ヘロト 人間 とくほとくほとう

Explained vs. Actual data

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

æ

э

• Regression results:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	4.3788	0.0099	443.15	0.0000	
year	0.0634	0.0006	106.56	0.0000	
jan	-0.0191	0.0136	-1.40	0.1621	
feb	0.0554	0.0136	4.07	0.0001	
mar	-0.0205	0.0134	-1.53	0.1267	
may	-0.0193	0.0134	-1.44	0.1502	
jun	-0.0103	0.0134	-0.77	0.4429	
jul	-0.0149	0.0134	-1.11	0.2664	
aug	-0.0057	0.0134	-0.43	0.6681	
sep	-0.0106	0.0136	-0.78	0.4376	
oct	0.0063	0.0136	0.46	0.6436	
nov	0.0587	0.0136	4.31	0.0000	
Residual SE = 0.04732					
F-stat(11, 210) = 1042					
prob value = 2.2e-16					
R-squared = 0.9820					
Adjusted R-squared: 0.9811					

Explained vs. Actual data

ъ

.≣...>

Residual data

<ロト <回 > < 注 > < 注 > 、

 There is still a lot of serial dependence in the residuals of the model.
 This means that there is yet a lot of variance about the IIP

which is to be captured.

(日)

프 > 프

Model 3

- The dummy variables capture a
- The linearity is better captured by log changes in IIP from the previous year.

$$y_t = log(IIP_t, y_1) - log(IIP_t, y_0)$$

This is a standard data transformation used in the econometric literature for seasonally adjusting macro-economic data.

- Model suggestions:
 - There is a trend.
 - There is seasonality.
- Model 2: log $IIP_{t,y1}/IIP_{t,y0} = \alpha_0 + \alpha_1 Y_t + \beta_1 Jan_t + \beta_2 Feb_t + \ldots + \beta_{11} Nov_t + \epsilon_t$

▲ ■ ▶ ▲ ■ ▶

IIP – YoY growth series

イロン イロン イヨン イヨン

IIP – YoY growth series

イロン イロン イヨン イヨン

• Regression results:

	Estimate	Std. Error	t value	Pr(> t)		
(Intercept)	4.2634	0.6553	6.51	0.0000		
gyear	0.2176	0.0562	3.87	0.0001		
Residual SE = 4.124						
F-stat(1, 208) = 14.98						
prob value = 1.45e-4						
R-squared = 0.06718						
Adjusted R-squared: 0.06269						

Explained vs. Actual data

ъ

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Residual data

<ロ> (日) (日) (日) (日) (日)

• Regression results:

	Estimate	Std. Error	t value	Pr(> t)		
(Intercept)	4.2099	0.9417	4.47	0.0000		
year	0.2188	0.0575	3.81	0.0002		
jan	0.2393	1.2437	0.19	0.8476		
feb	0.4629	1.2437	0.37	0.7102		
mar	-0.5066	1.2202	-0.42	0.6785		
may	-0.5438	1.2202	-0.45	0.6563		
jun	-0.2688	1.2202	-0.22	0.8259		
jul	-0.3038	1.2202	-0.25	0.8036		
aug	0.0545	1.2202	0.04	0.9644		
sep	0.3346	1.2443	0.27	0.7883		
oct	0.2540	1.2443	0.20	0.8385		
nov	0.8752	1.2443	0.70	0.4827		
Residual SE = 4.207						
F-stat(11, 198) = 1.479						
prob value = 0.1415						
R-squared = 0.0759						
Adjusted R-squared: 0.0246						

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Explained vs. Actual data

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

æ

ъ

Residual data

<ロ> (日) (日) (日) (日) (日)

Model 4: an autoregressive model for IIP

- Time series models use information from previous periods of own data to explain the next.
- Example, an autoregressive model for IIP would take the form:

$$IIP_t = \alpha + \beta_1 IIP_{t-1} + \epsilon_t$$

This is called the Autoregressive model (AR) of order 1 because it has only one previous period variable as the explanatory variable for IIP_t .

• More generic forms of AR models are:

$$IIP_t = \alpha + \beta_1 IIP_{t-1} + \ldots + \beta_k IIP_{t-k} + \epsilon_t$$

This is an AR(k) model with IIP from "k" previous periods to explain IIP_t .

・ロト ・ 理 ト ・ ヨ ト ・

Model 4: an autoregressive model for IIP

• Model for yoy-growth in IIP:

 $\sigma_{giip} = 4.2594$

ヘロト 人間 ト ヘヨト ヘヨト

2

Explained vs. Actual data

æ

ъ

Dependence in residual data

◆□ > ◆□ > ◆豆 > ◆豆 > →

Dependence in variance of residual data

æ

э

Cross-plot of giip vs. residuals

ъ

Cross-plot of giip vs. residuals-squared

ъ