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The problem of structural change

@ Model: Y; = 5o + 81 X4 + €
@ Structural change, type 1: change in parameters in time.

Yi = a1+ B1Xi + ey for period 1
Yi = oo+ [2Xi + ey for period 2

Solution: for a given “break point” 7,

2 _ nl 2 2 2 2 o N=n1+n2 2
Jur}r_estricted - Z €1i + Zn €5/ V8.0 estricted — Z e €
Critical value: F(k, N - 2k)

@ Other types of structural change
e Type 2: change in constant terms (dummy variables)
e Type 3: change in distribution of errors
e Type 4: change in sets of coefficients

Susan Thomas Dummy Variables



Testing for change in parameters in the sample

(r_i—r_f)=alpha_1 + beta_1 (r_M —r_f)

/ (r_i — r_f) =alpha_2 + beta_2 (r_M —r_f)

(r_i—-r_f)

(r_M -r_f) T_1 (r_M —-r_f) Time, t
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Type 2: change in constant terms

@ A dummy variable, Dy is a binary variable which takes the
value of 0 or 1 when the condition is “false” or “true”.
Example: Dy = 0 if a boy child is born, Dy = 1 if a girl child
is born.

@ Dummies are useful in changing the structure of the model
depending upon the value of some conditioning variable.

@ The simplest is to change the “intercept” term of the

regression model.
Example: Y; = weight, X; = height

Yi = a1+ X+ ey,i = female
Yi = a2+ BX + e,i= male
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Type 2: change in constant terms

_ 4 Y =alpha_l +beta X +¢

Y =alpha_0 + beta X + ¢

alpha_1

alpha_0

D=0 D=1 X i=D=1ID=0
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Change in intercept: test of mean

@ Data: Group 1 Yi=p+e¢ Group2 Y; = (u+0) + ¢
W= G s 1+ 0 = pg, OF d = pg, — fa
@ The regression can be estimated as:

Yi=pu+ 6D+ ¢
where D; = 0 for Group 1, D; = 1 for Group 2.
@ Alternative model: Y; = 1 Gy + p2Go + €;
Gy = 1,ifi= Group I, otherwise G; =0
G, = 1,ifi= Group 2, otherwise G> = 0
@ However, Hy in model 2 cannot ask whether a4, as = 0.
Advantage of the dummy variable model:

Ho : 6 = ug, — pg, is a well posed test of whether the
mean of Gy, G are different.
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Change in intercept: test of mean

@ Data frame for model 1

Y 1 0
Yo 1 0
Xl =yl o1
Yo42 1 1
L v 1 1 ]
[ Im O
Y - L In2 In2 :| te
@ OLS solution:
{l}] _ {N n2}1{n1}_/1+n2}72 _ i
) N ne N2y Yo —
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@ Use the normal equations of the OLS optimisation to show
that
5] - [e0
L

@ What is the standard error of 2,47

ST

Susan Thomas Dummy Variables



Change in intercept: test of mean

@ Data frame for model 2

i 0
vo= {01 /nz}“
@ OLS solution:
FHEFEIREIRES
fiG, 0 m my: | | ¥
g, _ [aé/m]
Thg, = | o/Vn2
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Model choices when dealing with dummy variables

Model 1: Yi = pu+ 6D + ¢;
Model 2: Y; = pug,Dg, + 1g,Dg, + €i
Incorrect model: Y; = a + pug, Dg, + p1g,Da, + €
Data matrix for the models:
Model 1 Model 2 Incorrect model
[ In1 0 :| [ /n1 0 :| |: /n1 /n1 0 :|
le  In2 0 e le 0 I
In the third data matrix, the sum of the second and third
columns add up to the first.
This means the inverse of (X’X)~"! cannot be calculated.
Which in turn means that three coefficents cannot be
estimated.
Problem of multicollinearity: with dummy variables,
coefficients for a “comprehensive” set of dummies cannot
be estimated simultaneously with an intercept.
Model can either contain a comprehesive set of dummy
variables or an intercept.

Susan Thomas Dummy Variables



Modelling the index cﬁgndustrial production,
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Seasonality in the IIP data
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Features of |IP

@ Data has monthly frequency from April 1990 to Sep 2008
@ Appears to have an annual trend — linear? non-linear?

@ Appears to have “seasonality”. Expected patterns at
regular intervals.
@ Model suggestions:

o A different level for different years: year trend term
Captures a level of lIP for a given year. For example,trend
is denoted as “1” for 1990, “2” for 1991, “3” for 1992, etc.

o A different level for different months: month dummies
Captures a level of IIP for a given month in a year. Each
month has a dummy. For example, Jan; is “1” for January in
any month, and “0” otherwise.

@ Model 1:
IIP; = ag + a1 Yi + B1dant + BoFebs + ... + B11Novi + ¢
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Model 1

@ Regression results

Estimate Std. Error tvalue Pr(>[t|)

(Intercept)  59.5827 1.9685 30.27 0.0000

year  10.0038 0.1736  57.63  0.0000
Residual SE = 0.0530
F-stat(1, 220) = 3322
prob value = 2.2e-16
R-squared = 0.9379
Adjusted R-squared: 0.9376
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Explained vs. Actual data
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Behaviour of serial dependence in residuals
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Full model 1

@ Regression results

Estimate Std. Error tvalue Pr(>|t|)
(Intercept)  59.4567 2.7854  21.35 0.0000
year  10.0058 0.1677 59.68 0.0000
jan  -3.6010 3.8334 -0.94 0.3486
feb  10.1878 3.8334 2.66 0.0085
mar  -4.3148 3.7649 -1.15  0.2531
may  -3.5201 3.7649 -0.93  0.3509
jun  -1.9253 3.7649 -0.51  0.6096
jul -2.3411 3.7649 -0.62 0.5347
aug  -0.5201 3.7649 -0.14  0.8903
sep  -2.2230 3.8352 -0.58 0.5628
oct 0.2770 3.8352 0.07 0.9425
nov 9.9826 3.8352 2.60 0.0099
Residual SE = 0.04730
F-stat(11, 210) = 3327.3
prob value = 2.2e-16
R-squared = 0.9449
Adjusted R-squared: 0.9420
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Interpreting the model

@ The omitted dummy is “Dec”.

@ Therefore, the ’jan” coefficient value of -3.601 is the
additional shift for January in addition to the value for
December. In this model, the January effect is:

59.4567 — 3.601 = 55.8557

@ From the model, the IIP level for January 1991 is

IIP;an 1991 = 59.4567 4- 10.0058 * 2 — 3.601 = 75.8673
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Explained vs. Actual data
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Behaviour of serial dependence in residuals
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Model 2

@ The trend and seasonality is non-linear
@ Model suggestions:
e Fit the model on log(lIP)
@ Model 2:
|Og IP; = ag + a1 Yy + B1dany + GoFeby + ... + 311 Nove + €;
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Simple model 2

@ Regression results:

Estimate Std. Error tvalue Pr(>[t|)

(Intercept) 4.3804 0.0075 580.80 0.0000

year 0.0634 0.0007  95.27 0.0000
Residual SE = 0.05301
F-stat(1, 220) = 9077
prob value = 2.2e-16
R-squared = 0.9763
Adjusted R-squared: 0.9762
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Explained vs. Actual data
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Full model 2

@ Regression results:

Estimate Std. Error tvalue Pr(>|t|)
(Intercept) 4.3788 0.0099 443.15 0.0000
year 0.0634 0.0006 106.56 0.0000
jan -0.0191 0.0136 -1.40 0.1621
feb 0.0554 0.0136 4.07  0.0001
mar  -0.0205 0.0134 -1.53  0.1267
may -0.0193 0.0134 -1.44  0.1502
jun  -0.0103 0.0134 -0.77  0.4429
jul - -0.0149 0.0134 111 0.2664
aug  -0.0057 0.0134 -0.43 0.6681
sep -0.0106 0.0136 -0.78 0.4376
oct 0.0063 0.0136 0.46 0.6436
nov 0.0587 0.0136 431 0.0000
Residual SE = 0.04732
F-stat(11, 210) = 1042
prob value = 2.2e-16
R-squared = 0.9820
Adjusted R-squared: 0.9811
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Explained vs. Actual data
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Residual data
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Results, inference

@ There is still a lot of serial dependence in the residuals of
the model.
This means that there is yet a lot of variance about the IIP
which is to be captured.
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Model 3

@ The dummy variables capture a

@ The linearity is better captured by log changes in IIP from
the previous year.

Yt = log(lIP;, y1) — log(1IPy, yo)

This is a standard data transformation used in the
econometric literature for seasonally adjusting
macro-economic data.
@ Model suggestions:
e Thereis a trend.
e There is seasonality.
@ Model 2: log /1Py 1 /1IP; o =
o + a1 Y + Brdan: + BoFeby + ... + By Nov + e
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lIP — YoY growth series
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lIP — YoY growth series
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Simple model 3

@ Regression results:
Estimate Std. Error tvalue Pr(>[t|)
(Intercept) 4.2634 0.6553 6.51  0.0000
gyear 0.2176 0.0562 3.87  0.0001
Residual SE = 4.124
F-stat(1, 208) = 14.98
prob value = 1.45e-4
R-squared = 0.06718
Adjusted R-squared: 0.06269
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Explained vs. Actual data
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Residual data
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Full model 3

@ Regression results:

Estimate Std. Error tvalue Pr(>|t|)
(Intercept) 4.2099 0.9417 4.47  0.0000
year 0.2188 0.0575 3.81  0.0002
jan 0.2393 1.2437 0.19 0.8476
feb 0.4629 1.2437 0.37 0.7102
mar  -0.5066 1.2202 -0.42 0.6785
may  -0.5438 1.2202 -0.45 0.6563
jun  -0.2688 1.2202 -0.22  0.8259
jul -0.3038 1.2202 -0.25 0.8036
aug 0.0545 1.2202 0.04 0.9644
sep 0.3346 1.2443 0.27 0.7883
oct 0.2540 1.2443 0.20 0.8385
nov 0.8752 1.2443 0.70 0.4827
Residual SE = 4.207
F-stat(11, 198) = 1.479
prob value = 0.1415
R-squared = 0.0759
Adjusted R-squared: 0.0246
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Explained vs. Actual data
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Residual data
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Model 4: an autoregressive model for IIP

@ Time series models use information from previous periods
of own data to explain the next.

@ Example, an autoregressive model for [IP would take the
form:
Pt = oo + B11IPi—1 + €t

This is called the Autoregressive model (AR) of order 1
because it has only one previous period variable as the
explanatory variable for //P;.

@ More generic forms of AR models are:
P = oo+ B1lIP—_q + ... + Bk lIPi_g + €t

This is an AR(k) model with IIP from “k” previous periods to
explain /IP;.
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Model 4: an autoregressive model for 1P

@ Model for yoy-growth in IIP:

giipr = 6.2819 + 0.5174giip;—1 + 0.3524giip;—2 + 0.0217giip;—3
—0.0052giip;—4 — 0.0125giip;—5 — 0.0351giip: e + 0.0452giip;—7
—0.0499giip;_g — 0.0318giip;—9 — 0.0291giip;—10 + 0.1101giips_11
—0.2506giip;—12 + 0.2932giip;—13 + 0.1812giip;—14 — 0.0402giip; 15
—0.2257giip:—16 + €t
oo = 24385
ogip = 4.2594
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Explained vs. Actual data
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Dependence in residual data

1.0

ACF
0.4
1

0.2
1

0.0

Susan Thomas Dummy Variables



Dependence in variance of residual data
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Cross-plot of giip vs. residuals-squared
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