Structural changes in errors

Susan Thomas IGIDR, Bombay

25 November, 2008

Susan Thomas Structural changes in errors

・ 同 ト ・ ヨ ト ・ ヨ ト

ъ

Change in distribution of errors

・ 同 ト ・ ヨ ト ・ ヨ ト

₹ 990

- Estimation residuals $\hat{\epsilon}_i$ are to be *i.i.d*.
- They are not if:
 - There are dependencies in the *ĉ_i*.
 An extreme form of such a dependency is serial dependency: there is correlation between *ĉ_i* and *ĉ_{i+1}*
 - There are change in $\sigma_{\hat{\epsilon}}^2$

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Dependence in $\hat{\epsilon}$

Serial dependence in *ê* can be detected using the autocorrelations coefficients between observations at *i*, *j*. This is denoted as *ρ_τ* and defined as:

$$\rho_{\tau} = \frac{\sum_{t} y_{t} y_{(t-\tau)}}{\sqrt{\sum_{t} y_{t}^{2} \sum_{t} y_{(t-\tau)}^{2}}}$$
$$= \frac{\sum_{t} y_{t} y_{t-\tau}}{\sigma_{y_{t}} \sigma_{y_{(t-\tau)}}}$$
$$= \frac{\sum_{t} y_{t} y_{t-\tau}}{\sigma_{y_{t}}^{2}}$$

- Under $H_0: \rho_{\tau} = 0$, $\sigma_{\rho_{\tau}} = 1/\sqrt{T}$ where *T* is the number of observations.
- Test statistic for an autocorrelation at lag τ , ρ_{τ} :

$$\rho_{\tau}/\sigma_{
ho_{ au}}$$

• Critical value: N(0, 1)

イロト 不得 とくほと くほとう

Test for serial dependence in $\hat{\epsilon}$

• The Durbin-Watson test statistic:

$$d = \frac{\sum_{i=2}^{T} (\hat{\epsilon}_i - \hat{\epsilon}_{i-1})^2}{\sum_{i=1}^{T} \hat{\epsilon}_i^2}$$

- The Durbin-Watson value always lies between 0 and 4.
 d = 2 is taken as evidence of no serial dependence in errors. d < 1 is taken as evidence of positive serial dependence.
- The Breusch-Godfrey test statistic:
 - More general than Durbin-Watson:

$$\hat{\epsilon}_i = \alpha_0 + \alpha_1 X_i + \gamma_1 \hat{\epsilon}_{i-1} + \gamma_2 \hat{\epsilon}_{i-2} + \gamma_3 \hat{\epsilon}_{i-3} + \ldots + \gamma_p \hat{\epsilon}_{i-p} + \mathbf{w}_i$$

- Test statistic: (N p)
- Critical value: χ²(ρ)

通 とく ヨ とく ヨ とう

Changes in residual variance

◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ の Q ()

- Estimation assumption: the residuals are iid.
- Heteroskedasticity: the mean of the distribution of the variables may be the same, but the variance changes from observation to observation.
- Can be a problem with both cross-section as well as time-series data.
- Example of cross-sectional data: the scores of school-going girls on maths tests have a variance that is lower thanthe scores of school-going boys on the same test.
- Example of time series data: the presence of serial dependence in the square of the residuals.

< 回 > < 回 > < 回 > .

Heteroskedasticity and the effect on OLS estimators

- OLS estimator: $\hat{\beta} = (X'X)^{-1}X'Y = \beta + (X'X)^{-1}X'\epsilon$ Original framework:

$$E(\epsilon\epsilon'|X) = \sigma^2 I$$

$$var(\hat{\beta}|X) = E[(\hat{\beta} - \beta)(\hat{\beta} - \beta)'|X]$$

$$= (X'X)^{-1}X'\epsilon\epsilon'X(X'X)^{-1} = \sigma^2(X'X)^{-1}$$

With heteroskedasticity,

$$\sigma^2 \Omega = \begin{bmatrix} \sigma_1^2 & 0 & 0 & \dots & 0 \\ 0 & \sigma_2^2 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & \sigma_N^2 \end{bmatrix}$$

This gives us the Generalised Regression Model where

$$E(\epsilon\epsilon'|X) = \sigma^2 \Omega$$

$$var(\hat{\beta}|X) = E[(\hat{\beta} - \beta)(\hat{\beta} - \beta)'|X]$$

$$= (X'X)^{-1}X'\epsilon\epsilon'X(X'X)^{-1} = (X'X)^{-1}X'\sigma^2 \Omega X(X'X)^{-1}$$

$$= \sigma^2 (X'X)^{-1}(X'\Omega X)(X'X)^{-1}$$

• Here, using $\hat{s}^2 (X'X)^{-1}$ for inference is incorrect.

- Two sources of heteroskedasticity:
 - The Y, X relationship varies across groups of observations:

$$\sigma^{2}\Omega = \begin{bmatrix} \sigma_{1}^{2} & 0 & 0 & \dots & 0 \\ 0 & \sigma_{2}^{2} & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & \sigma_{N}^{2} \end{bmatrix}$$

Here, the heteroskedasticity is conditional on X.Autocorrelation:

$$\sigma^{2}\Omega = \sigma_{\epsilon}^{2} \begin{bmatrix} 1 & \rho_{1} & \rho_{2} & \dots & \rho_{T-1} \\ \rho_{1} & 1 & \rho_{1} & \dots & \rho_{T-2} \\ \dots & \dots & \dots & \dots & \dots \\ \rho_{T-1} & \rho_{T-2} & \rho_{T-3} & \dots & 1 \end{bmatrix}$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

ъ

Test for heteroskedasticity

• $\sigma_{\hat{\epsilon}}^2$ should be the same across randomly selected subsets of the data.

$$H_0: \sigma_i^2 = \sigma^2 H_A: \sigma_i^2 \neq \sigma^2$$

- General approach for any test for heteroskedasticity will involve:
 - Estimate the base model and focus on the $\hat{\epsilon}_i^2$.
 - 2 Run an auxillary regression of the behaviour of $\hat{\epsilon}_i^2$ on the independent data, X.
- For example, if $Y_i = \alpha + \beta X_i + \epsilon_i$, the model used for $\hat{\epsilon}_i^2$ is:

$$\hat{\epsilon}_i^2 = \gamma_0 + \gamma_1 X_i + \gamma_2 X_i^2 + w_i$$

- w_i will not be normally distributed, but rather χ^2
- Since *E*(*w_i*) cannot be zero, the value of the intercept is important.
- Some alternative model has to be used to capture the potential source of the heteroskedasticity. Three standard tests for heteroskedasticity are: Goldfeld-Quandt, Breusch-Pagan, White

Tests for heteroskedasticity: White

- Most general test: White (1980).
- Test form:
 - If $Y_i = \alpha + \beta_1 X_i + \beta Z_i + \epsilon_i$, then
 - $\hat{\epsilon}_i^2 = \gamma_0 + \gamma_1 X_i + \gamma_2 X_i^2 + \gamma_3 Z_i + \gamma_4 Z_i^2 + \gamma_5 X_i Z_i + w_i$
- Test statistic: *NR*²; Critical value: *chi*²(*M*) where *M* is the number of regressors in the equation including the intercept.

Above, M = 6.

- Problems:
 - There could be other reasons for rejecting $H_0 : \sigma_i^2 = \sigma^2$ Example: there could be a quadratic relationship between Y_i, X_i that was not included in the base model.
 - If H₀ is rejected, the solution to fix heteroskedasticity is not obvious. We do not have inference on the coefficients of the regressors.

<ロ> (四) (四) (三) (三) (三)

Tests for heteroskedasticity: Goldfeld-Quandt

- Assumes that the heteroskedasicity is due to some dependent variable, X_i. Most extreme case: σ²_i = σ²x_i
- Test form:
 - First, create subsets of \$\hi_i\$ based on the value of \$X_i\$.
 Example, two subsets are created based on the values in \$X_i\$, \$\hi_{i,1}\$, \$\hi_{i,2}\$ of size \$n_1\$, \$n_2\$
 - Separately estimate base model for n_1 observations to get $\hat{\epsilon}_{i,1}$ and n_2 observations to get $\hat{\epsilon}_{i,2}$.
- Test statistic: $F = \frac{\epsilon'_1 \epsilon_1 / (n_1 K)}{\epsilon'_2 \epsilon_2 / (n_2 K)}$ Critical value: $F(n_1 - K, n_2 - K)$, K is regressors in the base model.
- Problems:
 - F-distribution is used when the errors are normally distributed. If not, White's test is recommended.
 - Statistician's recommendation: n₁ + n₂ ≠ N. Recommendation: drop no more than a third of the observations.

Goldfeld-Quandt is not appropriate for small samples.

Tests for heteroskedasticity: Breusch-Pagan

- Also assumes heteroskedasticity is due to some dependent variable, X_i. σ_i² = σ²f(α₀ + αZ) If â is significant, there is heteroskedasticity.
- Test form:
 - Like White's test if $Y_i = \alpha + \beta_1 X_i + \beta Z_i + \epsilon_i$,
 - Create Z as a matrix of P dependent variables (like in White's test) not including the intercept
 X Z X Z Z²
 - $[1, X_i, Z_i, X_i Z_i, X_i^2, Z_i^2]$
 - And $e = \hat{\epsilon}_i^2 / \hat{s}^2$ where $\hat{s}^2 = \hat{e}' \hat{e} / N$.
- Test statistic: Lagrange Multiplier, $LM = \frac{1}{2}(e'Z(Z'Z)^{-1}Z'e)$ Critical value: $\chi^2(P)$.
- Problems: The test needs normally distributed $\hat{\epsilon}$. Modified test: $LM = \frac{1}{V}((e - \hat{s}^2)'Z(Z'Z)^{-1}Z'(e - \hat{s}^2))$ where $V = \frac{1}{N}\sum_i (\hat{\epsilon}_i^2 - \hat{s}^2)^2$

・ロン ・四 と ・ ヨ と ・ ヨ と …

Dealing with heteroskedasticity

- If we know the "correct" form of (X'ΩX), and (X'ΩX) converges as N grow larger, then OLS estimators remain consistent and unbiased.
- Generalised Least Squares:

$$E(\epsilon \epsilon' | X) = \sigma^{2} \Omega$$

Construct P such that $P'P = \Omega$
Then $Py = PX\beta + P\epsilon$ gives us
 $\hat{\beta} = (X'P'PX)^{-1}(X'P'PY) = (X\Omega X)^{-1}(X'\Omega Y)$
 $var(\hat{\beta}|X) = E[(\hat{\beta} - \beta)(\hat{\beta} - \beta)'|X]$
 $= (X'X)^{-1}X'\epsilon\epsilon'X(X'X)^{-1} = (X'X)^{-1}X'\sigma^{2}\Omega X(X'X)$
 $= \sigma^{2}(X'X)^{-1}(X'\Omega X)(X'X)^{-1}$

This is a transformation of the data Y, X which gives us unbiased and efficient estimates for $\hat{\beta}$.

• This gives us the "correct" inference for the OLS estimates.

Dealing with heteroskedasticity

- What if we do not know the form of the heteroskedasticity?
- We use White's heteroskedasticity consistent estimator for Ω.
- $Q = \frac{1}{N} \sum_{i} \hat{\epsilon}_{i}^{2} x_{i} x_{i}'$
- Then the variance of $\hat{\beta}$ becomes:

 $N(X'X)^{-1}Q(X'X)^{-1}$

 This is analogous to a weighting scheme on the X variables to adjust for the heteroskedasticity in the estimated errors.

(四) (日) (日)

Checking for heteroskedasticity in the IIP regression

Susan Thomas Structural changes in errors

◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ の Q ()

Variance of log *IIP* by month

Variances of Log(IIP) by month

	$\sigma_{(\log IIP)}$
Jan	0.3612
Feb	0.3449
Mar	0.3689
Apr	0.3310
May	0.3462
Jun	0.3423
Jul	0.3471
Aug	0.3548
Sep	0.3613
Oct	0.3420
Nov	0.3418
Dec	0.3704

 Question: Can we test whether there are significant differences betweenthe variance of the IIP by different months?

ъ

Variance of yoy growth in IIP by month

Variances of g-IIP by month

	σ_{g-IIP}
Jan	5.0879
Feb	4.4734
Mar	6.7309
Apr	4.0356
May	4.0176
Jun	3.2547
Jul	3.2224
Aug	3.4235
Sep	3.5234
Oct	3.0625
Nov	3.9097
Dec	4.5055

 Here there seems to be more clarity on heteroskedasticity by months – Jan, Feb, Mar appear to have higher levels of error variance compared with the rest of the months.