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Change in distribution of errors
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Changes in the error distribution

Estimation residuals ε̂i are to be i .i .d .
They are not if:

There are dependencies in the ε̂i .
An extreme form of such a dependency is serial
dependency: there is correlation between ε̂i and ε̂i+1
There are change in σ2

ε̂
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Dependence in ε̂

Serial dependence in ε̂ can be detected using the
autocorrelations coefficients between observations at i , j .
This is denoted as ρτ and defined as:

ρτ =

∑
t yty(t−τ)√∑

t y2
t

∑
t y2

(t−τ )

=

∑
t ytyt−τ

σytσy(t−τ)

=

∑
t ytyt−τ

σ2
yt

Under H0 : ρτ = 0, σρτ = 1/
√

T where T is the number of
observations.
Test statistic for an autocorrelation at lag τ , ρτ :

ρτ/σρτ

Critical value: N(0, 1)
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Test for serial dependence in ε̂

The Durbin-Watson test statistic:

d =

∑T
i=2(ε̂i − ε̂i−1)2∑T

i=1 ε̂
2
i

The Durbin-Watson value always lies between 0 and 4.
d = 2 is taken as evidence of no serial dependence in
errors. d < 1 is taken as evidence of positive serial
dependence.
The Breusch-Godfrey test statistic:

More general than Durbin-Watson:

ε̂i = α0 + α1Xi + γ1ε̂i−1 + γ2ε̂i−2 + γ3ε̂i−3 + . . .+ γp ε̂i−p + wi

Test statistic: (N - p)
Critical value: χ2(p)
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Changes in residual variance
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Heteroskedasticity

Estimation assumption: the residuals are iid.
Heteroskedasticity: the mean of the distribution of the
variables may be the same, but the variance changes from
observation to observation.
Can be a problem with both cross-section as well as
time-series data.
Example of cross-sectional data: the scores of
school-going girls on maths tests have a variance that is
lower thanthe scores of school-going boys on the same
test.
Example of time series data: the presence of serial
dependence in the square of the residuals.
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Heteroskedasticity and the effect on OLS estimators

OLS estimator:β̂ = (X ′X )−1X ′Y = β + (X ′X )−1X ′ε
Original framework:

E(εε′|X ) = σ2I

var(β̂|X ) = E [(β̂ − β)(β̂ − β)′|X ]

= (X ′X )−1X ′εε′X (X ′X )−1 = σ2(X ′X )−1

With heteroskedasticity,

σ2Ω =

2664
σ2

1 0 0 . . . 0
0 σ2

2 0 . . . 0
. . . . . . . . . . . . . . .

0 0 0 . . . σ2
N

3775
This gives us the Generalised Regression Model where

E(εε′|X ) = σ2Ω

var(β̂|X ) = E [(β̂ − β)(β̂ − β)′|X ]

= (X ′X )−1X ′εε′X (X ′X )−1 = (X ′X )−1X ′σ2ΩX (X ′X )−1

= σ2(X ′X )−1(X ′ΩX )(X ′X )−1

Here, using ŝ2(X ′X )−1 for inference is incorrect.
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Sources of heteroskedasticity

Two sources of heteroskedasticity:
The Y ,X relationship varies across groups of observations:

σ2Ω =

2664
σ2

1 0 0 . . . 0
0 σ2

2 0 . . . 0
. . . . . . . . . . . . . . .

0 0 0 . . . σ2
N

3775
Here, the heteroskedasticity is conditional on X .
Autocorrelation:

σ2Ω = σ2
ε

2664
1 ρ1 ρ2 . . . ρT−1

ρ1 1 ρ1 . . . ρT−2

. . . . . . . . . . . . . . .
ρT−1 ρT−2 ρT−3 . . . 1

3775
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Test for heteroskedasticity

σ2
ε̂ should be the same across randomly selected subsets

of the data.
H0 : σ2

i = σ2HA : σ2
i 6= σ2

General approach for any test for heteroskedasticity will
involve:

1 Estimate the base model and focus on the ε̂2i .
2 Run an auxillary regression of the behaviour of ε̂2i on the

independent data, X .
For example, if Yi = α + βXi + εi , the model used for ε̂2i is:

ε̂2i = γ0 + γ1Xi + γ2X 2
i + wi

wi will not be normally distributed, but rather χ2

Since E(wi) cannot be zero, the value of the intercept is
important.
Some alternative model has to be used to capture the
potential source of the heteroskedasticity. Three standard
tests for heteroskedasticity are: Goldfeld-Quandt,
Breusch-Pagan, White
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Tests for heteroskedasticity: White

Most general test: White (1980).
Test form:

If Yi = α + β1Xi + βZi + εi , then
ε̂2i = γ0 + γ1Xi + γ2X 2

i + γ3Zi + γ4Z 2
i + γ5XiZi + wi

Test statistic: NR2; Critical value: chi2(M) where M is the
number of regressors in the equation including the
intercept.
Above, M = 6.
Problems:

There could be other reasons for rejecting H0 : σ2
i = σ2

Example: there could be a quadratic relationship between
Yi ,Xi that was not included in the base model.
If H0 is rejected, the solution to fix heteroskedasticity is not
obvious. We do not have inference on the coefficients of the
regressors.
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Tests for heteroskedasticity: Goldfeld-Quandt

Assumes that the heteroskedasicity is due to some
dependent variable, Xi . Most extreme case: σ2

i = σ2xi
Test form:

First, create subsets of ε̂i based on the value of Xi .
Example, two subsets are created based on the values in
Xi , ε̂i,1, ε̂i,2 of size n1,n2
Seperately estimate base model for n1 observations to get
ε̂i,1 and n2 observations to get ε̂i,2.

Test statistic: F =
ε′1ε1/(n1−K )

ε′2ε2/(n2−K )

Critical value: F (n1 − K ,n2 − K ), K is regressors in the
base model.
Problems:

F-distribution is used when the errors are normally
distributed. If not, White’s test is recommended.
Statistician’s recommendation: n1 + n2 6= N.
Recommendation: drop no more than a third of the
observations.
Goldfeld-Quandt is not appropriate for small samples.

Susan Thomas Structural changes in errors



Tests for heteroskedasticity: Breusch-Pagan

Also assumes heteroskedasticity is due to some
dependent variable, Xi . σ2

i = σ2f (α0 + αZ )
If α̂ is significant, there is heteroskedasticity.
Test form:

Like White’s test if Yi = α + β1Xi + βZi + εi ,
Create Z as a matrix of P dependent variables (like in
White’s test) not including the intercept
[1,Xi ,Zi ,XiZi ,X 2

i ,Z
2
i ]

And e = ε̂2i /ŝ
2

where ŝ2 = ê′ê/N.

Test statistic: Lagrange Multiplier, LM = 1
2(e′Z (Z ′Z )−1Z ′e)

Critical value: χ2(P).
Problems: The test needs normally distributed ε̂.
Modified test: LM = 1

V ((e − ŝ2)′Z (Z ′Z )−1Z ′(e − ŝ2))

where V = 1
N

∑
i(ε̂

2
i − ŝ2)2
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Dealing with heteroskedasticity

If we know the “correct” form of (X ′ΩX ), and (X ′ΩX )
converges as N grow larger, then OLS estimators remain
consistent and unbiased.
Generalised Least Squares:

E(εε′|X ) = σ2Ω

Construct P such thatP′P = Ω

Then Py = PXβ + Pε gives us

β̂ = (X ′P′PX )−1(X ′P′PY ) = (XΩX )−1(X ′ΩY )

var(β̂|X ) = E [(β̂ − β)(β̂ − β)′|X ]

= (X ′X )−1X ′εε′X (X ′X )−1 = (X ′X )−1X ′σ2ΩX (X ′X )−1

= σ2(X ′X )−1(X ′ΩX )(X ′X )−1

This is a transformation of the data Y ,X which gives us
unbiased and efficient estimates for β̂.
This gives us the “correct” inference for the OLS estimates.
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Dealing with heteroskedasticity

What if we do not know the form of the heteroskedasticity?
We use White’s heteroskedasticity consistent estimator for
Ω.
Q = 1

N
∑

i ε̂
2
i xix ′i

Then the variance of β̂ becomes:

N(X ′X )−1Q(X ′X )−1

This is analogous to a weighting scheme on the X
variables to adjust for the heteroskedasticity in the
estimated errors.
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Checking for heteroskedasticity in the IIP
regression
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Variance of log IIP by month

Variances of Log(IIP) by month
σ(log IIP)

Jan 0.3612
Feb 0.3449
Mar 0.3689
Apr 0.3310

May 0.3462
Jun 0.3423
Jul 0.3471

Aug 0.3548
Sep 0.3613
Oct 0.3420
Nov 0.3418
Dec 0.3704

Question: Can we test whether there are significant
differences betweenthe variance of the IIP by different
months?
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Variance of yoy growth in IIP by month

Variances of g-IIP by month
σg−IIP

Jan 5.0879
Feb 4.4734
Mar 6.7309
Apr 4.0356

May 4.0176
Jun 3.2547
Jul 3.2224

Aug 3.4235
Sep 3.5234
Oct 3.0625
Nov 3.9097
Dec 4.5055

Here there seems to be more clarity on heteroskedasticity
by months – Jan, Feb, Mar appear to have higher levels of
error variance compared with the rest of the months.
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