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Measures of model performance

Test statistics with logL or SSE of restricted vs.
unrestricted models: LR test, R2.
Forecast performance: in–sample vs. out-of-sample
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Test statistics using logL / SSE
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How to measure the performance of a model?

Upto now, we have measured “model performance” using
the objective function of the optimisation.
For MLE: the likelihood function evaluated at β̂.
For OLS: the value of the Sum of Squared Errors
evaluated at β̂.
Typically, these measures are used to compare the
performance of alternative models.
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Tests and their critical values

The standard test in MLE for model comparison is: LR test.

Test statistic: LR = −2log(LR/L), LR is the likelihood of the
“restricted” model.
This has a χ2(m) distribution where m is the number of
restrictions.

The standard measure in OLS for model comparison is: R2

Test statistic: LR = (RSSR − RSSU/m)(RSSU/N − K ).
RSSR is the sum of squared residual errors of the
“restricted” model.
This has a F (m,N − K ) distribution where m is the number
of restrictions and K is the total number of parameters
estimated in the unrestricted model.
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Adjusting logL measures to accomodate parsimony

MLE: Akaike Information Criteria (AIC), Schwartz-Bayes
Information Criteria (SBC)

AIC(k) = logL +
2K
N

SBC(k) = logL +
K log N

N

Accept a model whose AIC(k)/SBC(k) is larger.
Note: sometimes AIC/SBC can give contradictory results.
Choose the more conservative one. Typically SBC.
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Behaviour of 2 ∗ k/N vs k log N/N
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Adjusting SSE measures to accomodate parsimony

OLS: Adjusted R2.

R̄2 = 1− (N − 1)

(N − K )
(1− R2)

Accept a model whose R̄2 is larger.
The AIC equivalent in OLS is:

AIC(k) = s2
y (1− R2)e2k/N

The SBC equivalent in OLS is:

SBC(k) = s2
y (1− R2)nK/N
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Nested vs. non-nested models

In all the measures above, one constraint is that the
“restricted” model is an explicit subset of the unrestricted
model.
However, theory can favour a choice of two linear models,
M1,M2, such that

H0 : M1, y = Xβ + ε; HA : M2, y = Zγ + η

One approach to compare two non-nested model
performance: make a supermodel, which is the sum of
both.

Ms, y = Xβ + Zγ + u

This is called the encompassing approach.
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Nested vs. non-nested models

If H0 : M1, y = Xβ + ε; HA : M2, y = Zγ + η

An encompassing model:

Y = X ′β + Z ′δ + u

where Z ′ are the variables in M2 which are not in M1.
Test of H0 is to estimate the model and test if γ = 0. The
critical value is set the F-distribution.
Two popularly used tests: J-test (Davidson-Mackinnon)
and the Cox test.
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Model selection based on
prediction/Forecasting

Susan Thomas Prediction and model performance



Model: Yi = β0 + β1Xi + εi

What is E(Y |Xi) when Xi = X0?
We saw earlier that

E(Y0|X0) = β0 + β1X0 when we know the true parameters

E(Ŷ0|X0) = β̂0 + β̂1X0 when we don’t

We report E(Ŷ0|X0) with a 95% CI. The CI is determined
from the variance of E(Ŷ0).

var(Y0|X0) = E(Y0|X0 − E(Y0|X0))2

= E(ε0) = σ2
ε when we know (β0, β1) with certainty

var(Ŷ0|X0) = σ̂2
ε

[
1
N

+
(X0 − X̄ )2

SXX

]
when we do not
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An alternative for var(Ŷ0|X0)

If Ŷ0|X0 = β̂0 + β̂1X0 + ε̂0, then
var(Ŷ0|X0) can also be written as:

var(Ŷ0|X0) = E(Ŷ0|X0 − Ȳ0|X0)2 = E(ε̂0)2 = var(ε̂0)

var(ε̂0) is:

var(ε̂0) = var(Ŷ0 − Y0)

= var(Ŷ0) + var(Y0)− 2cov(Ŷ0,Y0)

var(ε̂0) = σ̂2
[
1 +

1
N

+
(X0 − X̄ )2

SXX

]
> var(Ŷ0)

In forecasting (Ŷ0|X0), use σ(ε̂0) which results in a fatter
CI, than σ(Ŷ0).

Susan Thomas Prediction and model performance



Predicting Y0|X0 for a multiple regression model

Model for investment (1967-1982):
realInvt = β0 + β1t + β2realYt + β3it + β4inft + ut

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.5091 0.0551 -9.234
t (t=1 in 1967) -0.0165 0.0019 -8.409
realYt (in trillions) 0.6704 0.0549 12.189
it (in %) -0.0023 0.0012 -1.908
inft (in %) -0.00009 0.0013 -0.070
Sum of squared residuals = 0.0004507 Number of obs. = 15
Std. Err of residuals = 0.006703 t(10), 5% = 2.228

Estimated var-cov of estimates
Intercept t Yt it inft

Intercept 0.00303
t 0.0001 3.88e-6
Yt -0.0030 -0.0010 0.0030
it 5.59e-6 2.29e-7 7.78e-6 1.49e-6
inft 3.21e-6 4.27e-8 2.28e-6 7.51e-7 1.82e-6

What is
E(Inv1983|t = 16,Y16 = 1.5 trillion, i16 = 10%, inf16 = 4%?
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Predicting Y0|X0 for a multiple regression model

(β̂)′ = (-0.509, -0.017, 0.670, -0.002, -0.0001)
(X0) = (1, 16, 1.5, 10, 4)
ˆInft = Ŷ0|X0 = X0β̂ = 0.2036

v̂ar( ˆInft ) = v̂ar(ε̂0)2 = σ2 + X ′0
[
(σ2(X ′X )−1]X0

v̂ar(ε̂0)2 = 0.00009772
95% CI for ˆInft =

0.2036± 2.228(0.009885) = (0.1811,0.2262)

If this comes out as comparable to the actual data in 1983,
then the model works – forecasts as a tool for model
performance.
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Using prediction in model selection

Typically, the estimation is applied on the whole set of data.
Under this situation, the measure of model performance
becomes the SSE of the whole data set.
“In sample prediction” is how well the estimated model fits
the data used in the estimation itself.
Typically, printed as the root-mean-squared-error (RMSE)

of the model:
√∑

i ε̂
2
i /N

“Out of sample prediction” is how well the estimated model
fits the data that has not been included in the estimation.
Here the measure is the same; however, the data is not.
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Calculating “out-of-sample” RMSE

The procedure to calculate the “out of sample prediction”.
1 Partition the dataset (size N) into two:N1,N2. Typically,

N1 >> N2.
2 Estimate the model using N1 “in-sample” observations.
3 For model M1, calculate RMSEM1 , using N2 “out-of-sample”

observations.

This can be replicated for all competing models.
The same partitioned data should be used:

1 N1 to estimate alternative models, M2, M3
2 Using the estimated coefficients to make predictions for N2

oservations to calculate “out-of-sample” RMSE for each
model:
RMSEM2 ,RMSEM3 , . . ..

The model that has the “smallest” out-of-sample RMSE is
considered the best.
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Model selection based on “out-of-sample” RMSE

This approach can be used to select across all manner of
different models.
Care has to be taken on the partitioning of data:

1 For cross-sectional data: the partitioned datasets have to
be random.

2 This is not a choice for time-series data.
Time series data depends upon simulation methods when
using prediction as an alternative to traditional methods.
“MonteCarlo”, “bootstrap”, “block-bootstrap”.
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