Prediction and model performance

Susan Thomas IGIDR, Bombay

28 November, 2008

Susan Thomas Prediction and model performance

프 > 프

- Test statistics with logL or SSE of restricted vs. unrestricted models: *LR* test, *R*².
- Forecast performance: in-sample vs. out-of-sample

A E > A E >

Test statistics using logL / SSE

Susan Thomas Prediction and model performance

◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ の Q ()

- Upto now, we have measured "model performance" using the objective function of the optimisation.
 For *MLE:* the likelihood function evaluated at β̂.
 For *OLS:* the value of the Sum of Squared Errors evaluated at β̂.
- Typically, these measures are used to compare the performance of alternative models.

(雪) (ヨ) (ヨ)

Tests and their critical values

- The standard test in MLE for model comparison is: LR test.
 - Test statistic: $LR = -2log(L_R/L)$, L_R is the likelihood of the "restricted" model.
 - This has a χ²(m) distribution where m is the number of restrictions.
- The standard measure in OLS for model comparison is: R²
 - Test statistic: $LR = (RSS_R RSS_U/m)(RSS_U/N K)$. RSS_R is the sum of squared residual errors of the "restricted" model.
 - This has a F(m, N K) distribution where *m* is the number of restrictions and *K* is the total number of parameters estimated in the unrestricted model.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Adjusting logL measures to accomodate parsimony

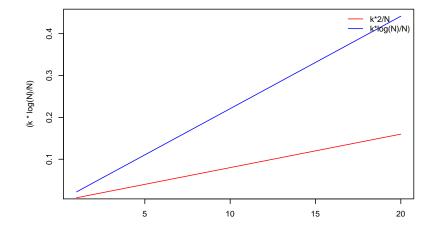
 MLE: Akaike Information Criteria (AIC), Schwartz-Bayes Information Criteria (SBC)

$$AIC(k) = logL + \frac{2K}{N}$$
$$SBC(k) = logL + \frac{K \log N}{N}$$

Accept a model whose AIC(k)/SBC(k) is larger. Note: sometimes AIC/SBC can give contradictory results. Choose the more conservative one. Typically SBC.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Behaviour of 2 * k/N vs $k \log N/N$



◆□ > ◆□ > ◆豆 > ◆豆 > →

æ

Adjusting SSE measures to accomodate parsimony

OLS: Adjusted R².

$$\bar{R}^2 = 1 - \frac{(N-1)}{(N-K)}(1-R^2)$$

Accept a model whose \bar{R}^2 is larger.

• The AIC equivalent in OLS is:

$$\operatorname{AIC}(k) = s_y^2(1 - R^2)e^{2k/N}$$

• The SBC equivalent in OLS is:

$$\operatorname{SBC}(k) = s_y^2(1-R^2)n^{K/N}$$

- ⊒ →

Nested vs. non-nested models

- In all the measures above, one constraint is that the "restricted" model is an explicit subset of the unrestricted model.
- However, theory can favour a choice of two linear models, M_1, M_2 , such that

$$H_0: M_1, y = X\beta + \epsilon; H_A: M_2, y = Z\gamma + \eta$$

 One approach to compare two non-nested model performance: make a supermodel, which is the sum of both.

$$M_{s}, y = X\beta + Z\gamma + u$$

This is called the encompassing approach.

・ 同 ト ・ ヨ ト ・ ヨ ト …

- If $H_0: M_1, y = X\beta + \epsilon$; $H_A: M_2, y = Z\gamma + \eta$
- An encompassing model:

$$Y = X'\beta + Z'\delta + u$$

where Z' are the variables in M_2 which are not in M_1 .

- Test of H₀ is to estimate the model and test if γ = 0. The critical value is set the F-distribution.
- Two popularly used tests: *J*-test (Davidson-Mackinnon) and the *Cox* test.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Model selection based on prediction/Forecasting

Susan Thomas Prediction and model performance

< 合

э

Model: $Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$

- What is $E(Y|X_i)$ when $X_i = X_0$?
- We saw earlier that

 $E(Y_0|X_0) = \beta_0 + \beta_1 X_0 \text{ when we know the true parameters}$ $E(\hat{Y}_0|X_0) = \hat{\beta}_0 + \hat{\beta}_1 X_0 \text{ when we don't}$

We report E(Ŷ₀|X₀) with a 95% CI. The CI is determined from the variance of E(Ŷ₀).

$$\operatorname{var}(Y_0|X_0) = \operatorname{E}(Y_0|X_0 - E(Y_0|X_0))^2$$

= $\operatorname{E}(\epsilon_0) = \sigma_{\epsilon}^2$ when we know (β_0, β_1) with certainty
 $\operatorname{var}(\hat{Y}_0|X_0) = \hat{\sigma}_{\epsilon}^2 \left[\frac{1}{N} + \frac{(X_0 - \bar{X})^2}{S_{XX}}\right]$ when we do not

▲■ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ の Q @

An alternative for $var(\hat{Y}_0|X_0)$

• If
$$\hat{Y}_0 | X_0 = \hat{\beta}_0 + \hat{\beta}_1 X_0 + \hat{\epsilon}_0$$
, then
• var($\hat{Y}_0 | X_0$) can also be written as:

$$\operatorname{var}(\hat{Y}_{0}|X_{0}) = \operatorname{E}(\hat{Y}_{0}|X_{0} - \bar{Y}_{0}|X_{0})^{2} = \operatorname{E}(\hat{\epsilon}_{0})^{2} = \operatorname{var}(\hat{\epsilon}_{0})$$

• var($\hat{\epsilon}_0$) is:

$$\begin{aligned} \operatorname{var}(\hat{\epsilon}_0) &= \operatorname{var}(\hat{Y}_0 - Y_0) \\ &= \operatorname{var}(\hat{Y}_0) + \operatorname{var}(Y_0) - 2 \operatorname{cov}(\hat{Y}_0, Y_0) \\ \operatorname{var}(\hat{\epsilon}_0) &= \hat{\sigma}^2 \left[1 + \frac{1}{N} + \frac{(X_0 - \bar{X})^2}{S_{XX}} \right] > \operatorname{var}(\hat{Y}_0) \end{aligned}$$

In forecasting (Ŷ₀|X₀), use σ(ĉ₀) which results in a fatter CI, than σ(Ŷ₀).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Predicting $Y_0|X_0$ for a multiple regression model

• Model for investment (1967-1982): real $Inv_t = \beta_0 + \beta_1 t + \beta_2 real Y_t + \beta_3 i_t + \beta_4 inf_t + u_t$

Estimate	Std. Error	t value	Pr(> t)			
(Intercept)	-0.5091	0.0551	-9.234			
<i>t</i> (t=1 in 1967)	-0.0165	0.0019	-8.409			
real Y_t (in trillions)	0.6704	0.0549	12.189			
<i>i</i> _t (in %)	-0.0023	0.0012	-1.908			
<i>inf_t</i> (in %)	-0.00009	0.0013	-0.070			
Sum of squared residuals = 0.0004507			Number	of obs. = 1	5	
Std. Err of residuals = 0.006703			t(10), 5%	= 2.228		
Estimated var-cov of estimates						
	Intercept	t	Y_t	i _t	inf _t	
Intercept	0.00303					
t	0.0001	3.88e-6				
Y_t	-0.0030	-0.0010	0.0030			
i _t	5.59e-6	2.29e-7	7.78e-6	1.49e-6		
inf _t	3.21e-6	4.27e-8	2.28e-6	7.51e-7	1.82e-6	

What is

$$E(Inv_{1983}|t = 16, Y_{16} = 1.5 \text{ trillion}, i_{16} = 10\%, inf_{16} = 4\%?$$

Predicting $Y_0|X_0$ for a multiple regression model

• $(\hat{\beta})' = (-0.509, -0.017, 0.670, -0.002, -0.0001)$

•
$$(X_0) = (1, 16, 1.5, 10, 4)$$

•
$$\hat{lnf}_t = \hat{Y}_0 | X_0 = X_0 \hat{\beta} = 0.2036$$

• $\hat{v}ar(\hat{lnf}_t) = \hat{v}ar(\hat{\epsilon}_0)^2 = \sigma^2 + X'_0 \left[(\sigma^2 (X'X)^{-1} \right] X_0$

•
$$\hat{v}ar(\hat{\epsilon}_0)^2 = 0.00009772$$

• 95% CI for $\hat{lnf}_t =$

$$0.2036 \pm 2.228(0.009885) = (0.1811, 0.2262)$$

 If this comes out as comparable to the actual data in 1983, then the model works – forecasts as a tool for *model performance*.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ●

Using prediction in model selection

- Typically, the estimation is applied on the whole set of data. Under this situation, the measure of model performance becomes the SSE of the whole data set.
- "In sample prediction" is how well the estimated model fits the data used in the estimation itself. Typically, printed as the root-mean-squared-error (RMSE) of the model: $\sqrt{\sum_{i} \hat{\epsilon}_{i}^{2}/N}$
- "Out of sample prediction" is how well the estimated model fits the data that has *not* been included in the estimation. Here the measure is the same; however, the data is not.

Calculating "out-of-sample" RMSE

- The procedure to calculate the "out of sample prediction".
 - Partition the dataset (size N) into two: N_1 , N_2 . Typically, $N_1 >> N_2$.
 - 2 Estimate the model using N_1 "in-sample" observations.
 - For model M₁, calculate RMSE_{M1}, using N₂ "out-of-sample" observations.
- This can be replicated for all competing models. The same partitioned data should be used:
 - **1** N_1 to estimate alternative models, M_2 , M_3
 - Using the estimated coefficients to make predictions for N₂ oservations to calculate "out-of-sample" RMSE for each model:
 RMSE FOR ENGLE

 $RMSE_{M_2}, RMSE_{M_3}, \ldots$

• The model that has the "smallest" out-of-sample RMSE is considered the best.

<ロ> (四) (四) (三) (三) (三) (三)

- This approach can be used to select across all manner of different models.
- Care has to be taken on the partitioning of data:
 - For cross-sectional data: the partitioned datasets have to be random.
 - This is not a choice for time-series data. Time series data depends upon simulation methods when using prediction as an alternative to traditional methods. "MonteCarlo", "bootstrap", "block-bootstrap".

ヘロン 人間 とくほ とくほ とう