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The problem

Suppose we are faced with a situation where the variable of interest, that we
choose to explain, takes values of 0 or 1. This is called a discrete variable, a
categorical variable, or a ‘factor’. We seek to write a model where a set of
explanatory variables determine this outcome.

Examples of this situation include:

• The outcome of an election (did the incumbent win or not?)

• Whether a firm has built a factory outside its home country or not

• Whether a country has further liberalised the capital account in a given
year or not.

In each of these cases, we seek to write a model where the outcome is
explained using a set of explanatory variables. Ordinary OLS is not appro-
priate for this because in OLS, the variable that we seek to explain must have
real values and can run from ∞ to ∞. There is a theorem which teaches us
that if OLS is inappropriately applied in this situation, the estimates from
this ‘linear probability model’ are inconsistent.

The model

We assume there is a latent, or unobserved, variable y∗ which is generated
from a familiar looking model:

y∗ = β′x+ e

where β is a K-vector of parameters, x is a vector of explanatory variables
and e ∼ N(0, 1) is a random shock. We observe y = 1 if y∗ > 0 and y = 0
otherwise.
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Note that in the model, the standard error of e is 1. If we sought to write
e ∼ N(0, σ2), this σ is not identified. To see this, divide both left and right
hand sides by σ.

Estimation

It is easy to show that Pr(y = 1) = Φ(β′x). This gives us the likelihood for
both cases y = 0 and y = 1. Assuming the observations are i.i.d. it is easy to
construct the sample log likelihood. This can be maximised using standard
nonlinear maximisation algorithms. The standard MLE inference procedures
give us the variance-covariance matrix of β̂.

Monte carlo example in R

Let us start by simulating a dataset containing x1 and x2, and a true model
where y∗ = 7 + 3x1 − 4x2 + e. Thus, the true β = (7, 3,−4).

R version 2.7.1 (2008-06-23)

> # Simulate from probit model --

> simulate <- function(N) {

x1 <- 2*runif(N)

x2 <- 5*runif(N)

ystar <- 7 + 3*x1 - 4*x2 + rnorm(N)

y <- as.numeric(ystar>0)

print(table(y))

data.frame(y, x1, x2, ystar)

}

The function simulate(N) will give us a data frame with N observations
from this model.

Let’s go on to estimation. We’ll use the glm() function in R where probit
is a special case of Generalised Linear Models.

> # A simple example of estimation --

> D <- simulate(200)

y

0 1

97 103

> m <- glm(y~x1+x2, family=binomial(probit), data=D)
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> summary(m)

Call:

glm(formula = y ~ x1 + x2, family = binomial(probit), data = D)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.125e+00 -7.332e-04 2.107e-08 7.812e-04 2.326e+00

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 8.0810 1.6723 4.832 1.35e-06 ***

x1 3.1877 0.6948 4.588 4.47e-06 ***

x2 -4.4544 0.8488 -5.248 1.54e-07 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 277.079 on 199 degrees of freedom

Residual deviance: 40.845 on 197 degrees of freedom

AIC: 46.845

Number of Fisher Scoring iterations: 10

For this one dataset of 200 observations, we got back a β̂ = (8.08, 3.19,−4.45)
which is quite close to the true β.

Let us look at how well this model predicts in-sample:

> # Predictions using the model --

> predictions <- predict(m)

> summary(predictions)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-13.0800 -4.1720 0.1780 0.3705 5.1250 12.7400

> yhat <- ifelse(predictions>0, 1, 0)

> table(yhat, D$y)

yhat 0 1

0 93 5

1 4 98

It does pretty well. For 93 cases, the truth is 0 and the predicted value is
0. Similarly, for 98 cases, the truth is 1 and the predicted value is 1. There
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are only 9 cases which are misclassified.
Do we have consistency?

> # For very large N do we recover the true parameters?

> D <- simulate(10000)

y

0 1

4996 5004

> m <- glm(y~x1+x2, family=binomial(probit), data=D)

> coef(m)

(Intercept) x1 x2

6.878840 2.983776 -3.945550

Compared with a true β = (7, 3,−4), we have recovered a β̂ = (6.878, 2.983,−3.945).

Further reading

For an example of an applied paper that utilises the probit model, see: The
economic determinants of the choice of an exchange rate regime: A probit
analysis by J. M. Rizzo, Economics Letters, 1998,
http://linkinghub.elsevier.com/retrieve/pii/S0165176598000561

History

The probit model was first proposed by Chester Ittner Bliss in 1935. Estima-
tion of the model only became practical in the 1970s with the availability of
mainframe computers which could solve nonlinear maximisation problems.
It has become the workhorse of analysing discrete choice problems.

Immediate extensions

Some discrete variables take on more than one discrete outcome. Sometimes
there is a clear ordering, e.g. if we define 0 for no education, 1 for school
education and 2 for college or beyond, we have a ordered factor with values
0,1,2. The ordered probit model is a natural extension of the probit model
where instead of defining 0 or 1 based on whether y∗ > 0 or not, we look at
where y∗ falls with respect to a vector of cutoffs τ .

When a discrete variable cannot be ordered, the multinomial probit is
useful.
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Alternative distributions can be considered. In the discrete 0/1 case, this
leads to the logit model instead of the probit model.

Generalised linear models (GLMs) are a powerful framework which en-
compasses a wide variety of these models.
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