Econometrics I, quiz 17

Susan Thomas

November 28, 2008

- 1. This is a 20-minute quiz
- 2. NO point in the exam can you discuss the questions/answers with any of your colleagues.
- 3. Good luck. :-)

• Preamble: Testing non-linear restrictions

In the previous quiz, the problem was of testing a null of the form:

$$H_0: \alpha + \beta = 1, H_a: \beta_1 + \beta_2 \neq 1$$

What if we want to test a non-linear restriction on $\vec{\beta}$? Example, $\beta_1/\beta_2 = 1$, or $\beta_1\beta_2 = 1$?

The approach: We know that the restriction on the coefficients can generally be written as $H_0: R(\beta) = r. R()$ is nonlinear, and the test statistic remains:

$$\frac{R(\beta) - r}{\operatorname{var}(R(\hat{\beta}))}$$

It is easy to evaluate $R(\hat{\beta}) - r$ with the estimated coefficients. But what is the estimated variance of $R(\hat{\beta})$?

Use a linear Taylor expansion of $c(\beta)$ to find out.

$$\begin{aligned} R(\hat{\beta}) &= R(\beta) + \frac{\partial R(\beta)'}{\partial \beta} (\hat{\beta} - \beta) \\ \Rightarrow \operatorname{var}(R(\hat{\beta})) &= \left(\frac{\partial R(\beta)}{\partial \beta}\right)' \operatorname{var}(\hat{\beta}) \left(\frac{\partial R(\beta)}{\partial \beta}\right) \end{aligned}$$

Example: $\beta_1/\beta_2 = 1$. $R(\beta)$ is non-linear. Then,

$$\begin{split} dR_{\beta_1} &= \partial R(\beta)/\partial \beta_1 &= 1/\beta_2 \\ dR_{\beta_2} &= \partial R(\hat{\beta})/\partial \hat{\beta}_2 &= -\beta_1/\beta_2^2 \\ &\Rightarrow \operatorname{var}(R(\hat{\beta})) &= dR_{\beta_1}^2 \hat{\sigma}_{\hat{\beta}_1}^2 + dR_{\beta_2}^2 \hat{\sigma}_{\hat{\beta}_2}^2 + 2dR_{\beta_1} dR_{\beta_2} c \hat{o} v_{(\hat{\beta}_1, \hat{\beta}_2)} \end{split}$$

Q1: Testing the long-run marginal propensity to consume (MPC).

A consumption equation differentiating between short-run and long run MPC is:

$$C_t = \alpha + \beta Y_t + \gamma C_{t-1} + \epsilon_t$$

where β captures short-run MPC and $\delta = \beta/(1-\gamma)$ captures the long-run MPC.

If you are given the following estimation information on the above consumption equation,

Variable	Estimate	Std. Err.
Intercept	10.0130	9.451
Y_t	0.6460	0.1041
C_{t-1}	0.2884	0.1186
N: 36		
R^2 : 0.9987		
Estimated estimator covariance matrix		
	Y_t	C_{t-1}
Y_t		-0.01234
C_{t-1}		

1. Write out the consumption equation with the estimated parameters. (1 point)

2. What is the test statistic to test $H_0: \beta/(1-\gamma) = 1, H_A: \beta/(1-\gamma) \neq 1$? (8 points)

3. What will you use as the distribution to determine the critical value for this statistic? (1 point)