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Recap

I Finance deals with consumption smoothing of all economic
agents: individuals, firms, governments.

I Firms are built using debt and equity.

I A bond is a debt security, while shares are equity securities.

I Securities allow debt and equity to be traded.

I Financial markets trade securities to discover prices, provide
liquidity and allow risk to be managed.

I Different markets have different microstructures to carry out the
same functions.
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Goals of this class

I Assets as a combination of cashflow, maturity pairs.
I Basics in the framework to compare assets: rate of return,

period of investment, frequency of compounding.
I The discounted present value approach to price assets,

DPV.
I Pricing bonds, physical projects, stocks.



Assets as a combination of cashflow,
maturity pairs



Basic definition of any financial asset

1. Every asset is a legal contract between two counterparties.
2. Parameters of contract definition:

I Every contract has an expected cashflow
I at a defined maturity.

Cashflows: what amount and type of income is received.

Every asset can be described as a series of (Cashflow,
Maturity) pairs.
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Classifying financial assets

I Assets with fixed (deterministic) cashflows and fixed
maturities: loans, bonds

I Assets with fixed cashflows and uncertain maturities:
insurance products

I Assets with uncertain cashflows and fixed maturities:
derivatives

I Assets with uncertain cashflows and uncertain maturities:
equity
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Basic concepts of investments and returns
on investments



Comparing investments

I Financial comparisons are done on rates of returns on
investments.

I Return over a period, (1 + R) = P1/P0 where P1,P0 are
prices at sale and purchase.

I If the periods of investment are different, then R cannot be
used to compare across investments.

I Need to standardise returns as an annual rate of return for
comparison.
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From rates to terminal investment value
I What you need:

1. Rate of return: R per year.
2. Period of investment: T
3. Frequency of payment within the year: n

I Terminal value of investment, A:

TV = A(1 +
R
n

)nT

I Annual compounding, at R per annum: A(1 + R)t

I Continuous compounding, at R per annum: Aeln(1+R)T

I Example:
I TV = 110 with Rs.100 invested for a year at 10 percent

annual rate of return.
I TV = 110.5171 when the return is continously

compounded.

I In this course, we use continuous compounding.
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The difference that compounding makes
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Effective rate of return

I Effective return is the annualised, single payment based return
on any investment. (Re)

(1 + Re)1 = (1 +
R
n

)n

I Example: investment pays returns at a periodic rate of 5% every
six months, which is quoted as simple annual rate of 10% every
year.
Rs.100 becomes Rs.110.25 after a year. (100 ∗ (1.05)2)
Effective return = 10.25 percent (= 100 ∗ (110.25/100− 1))

I Example: Continuously compounded investment at 10%.
Re = 2ln(1 + 0.10/2)

I Effective annual rate = 9.758% per year.



Arithmetic vs. geometric average of returns

I Annual effective returns can be calculated as:

I R̄a (arithmetic) = (r1 + r2)/2
I (1 + R̄g) (geometric) = ((1 + r1)(1 + r2))1/2

log(1 + R̄g) =
1
2

(log(1 + R1) + log(1 + R2))

R̄g ∼
1
2

(R1 + R2)

When R1 6= R2, R̄a > R̄g .

I Terminal wealth, A2 = A(1 + R̄g)2
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Long horizon returns

I A0,AT is wealth at start and end. Then:

AT = A0(1 + R1)(1 + R2) . . . (1 + RT )

ln(AT/A0) = ln(1 + R1) + ln(1 + R2) + . . .+ ln(1 + RT )

= rc1 + rc2 + . . .+ rcT

rci is the continously compounded interest rate.

I Then final wealth is:

AT = A0e(rc1+rc2+...+rcT ) ∼ A0(1 + R̄g)T



Nominal vs. real returns

I All calculations so far gave us nominal returns.

I Real return has meaning wrt purchasing power.
Example, real annualised return of 1%→ your investment allows
purchasing 1% more of a fixed basket of goods at year end.

I Measurement is relative to price of the basket of goods, Pg,t .

I Then real wealth Ar ,0 at t = 0 is

Ar ,0 = A0/Pg,0

I If R is nominal return on wealth, then at t = 1,

Nominal wealth at t = 1,A1 = A0(1 + R)

Real wealth at t = 1,Ar ,1 =
A1

Pg,1
=

Ar ,0Pg,0(1 + R)

Pg,1



Nominal vs. real returns

I All calculations so far gave us nominal returns.

I Real return has meaning wrt purchasing power.
Example, real annualised return of 1%→ your investment allows
purchasing 1% more of a fixed basket of goods at year end.

I Measurement is relative to price of the basket of goods, Pg,t .

I Then real wealth Ar ,0 at t = 0 is

Ar ,0 = A0/Pg,0

I If R is nominal return on wealth, then at t = 1,

Nominal wealth at t = 1,A1 = A0(1 + R)

Real wealth at t = 1,Ar ,1 =
A1

Pg,1
=

Ar ,0Pg,0(1 + R)

Pg,1



Nominal vs. real returns

I All calculations so far gave us nominal returns.

I Real return has meaning wrt purchasing power.
Example, real annualised return of 1%→ your investment allows
purchasing 1% more of a fixed basket of goods at year end.

I Measurement is relative to price of the basket of goods, Pg,t .

I Then real wealth Ar ,0 at t = 0 is

Ar ,0 = A0/Pg,0

I If R is nominal return on wealth, then at t = 1,

Nominal wealth at t = 1,A1 = A0(1 + R)

Real wealth at t = 1,Ar ,1 =
A1

Pg,1
=

Ar ,0Pg,0(1 + R)

Pg,1



The effect of inflation on returns

I Inflation, π: Pg,1/Pg,0 − 1

I Real rate of return, r for period 1 is calculated as:

(1 + r1) =
Ar ,1

Ar ,0
= (1 + R1)/(1 + π)

r1 ∼ R1 − π



Returns on foreign investments
I Nominal return on a foreign investment =

Foreign currency return + appreciation in the foreign currency.
Example, an Indian investment in the US returns:
USD nominal returns on the investment +
USD-INR returns.

I If US nominal returns Rus and INR for 1 USD at t = 0 is E0, then:

I A0 investment (in INR) becomes nominal A1 over a year as:

A1 =
A0(1 + Rus)E1

E0

R = (A1 − A0)/A0 = Rus + (E1 − E0)/E0 + Rus((E1 − E0)/E0)

∼ Rus + Rfx

I HW: Show that the real return on foreign investment is

Rr ,1 ∼ Rus + Rfx − πIndia



Returns on foreign investments
I Nominal return on a foreign investment =

Foreign currency return + appreciation in the foreign currency.
Example, an Indian investment in the US returns:
USD nominal returns on the investment +
USD-INR returns.

I If US nominal returns Rus and INR for 1 USD at t = 0 is E0, then:

I A0 investment (in INR) becomes nominal A1 over a year as:

A1 =
A0(1 + Rus)E1

E0

R = (A1 − A0)/A0 = Rus + (E1 − E0)/E0 + Rus((E1 − E0)/E0)

∼ Rus + Rfx

I HW: Show that the real return on foreign investment is

Rr ,1 ∼ Rus + Rfx − πIndia



Returns on foreign investments
I Nominal return on a foreign investment =

Foreign currency return + appreciation in the foreign currency.
Example, an Indian investment in the US returns:
USD nominal returns on the investment +
USD-INR returns.

I If US nominal returns Rus and INR for 1 USD at t = 0 is E0, then:

I A0 investment (in INR) becomes nominal A1 over a year as:

A1 =
A0(1 + Rus)E1

E0

R = (A1 − A0)/A0 = Rus + (E1 − E0)/E0 + Rus((E1 − E0)/E0)

∼ Rus + Rfx

I HW: Show that the real return on foreign investment is

Rr ,1 ∼ Rus + Rfx − πIndia



Pricing assets



Discounted present value
I Terminal value of investment over T years:

TVT = A(1 + rT )T

where rT is the interest rate over that period.
I Discounted present value, DPV is:

TVT/(1 + rT )T

This is what you would be willing to pay to get FV in the future.
This is the price of the investment today.

I Inputs to price an asset using DPV:
1. Cashflows
2. Their maturity
3. The rate of return over the period.

I When there are several payments in the future, and the rate of
return is constant for all points in the payment structure,

P =
T∑

t=1

TVt/(1 + r)t
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Example: Price of an annuity

Features: Constant cashflows at every interval for the rest of
your life.
If r is constant, then:

Pannuity =
TV
r

(1− 1/(1 + r)T



Pricing projects



Pricing physical investment projects
I A project has a capital cost: K and

Expected cashflow at fixed maturities: Ci , ti .

I DPV of cashflows is
∑T

i=1 Ci/(1 + r)i , or:

T∑
i=1

δiCi

I Net Present Value, NPV = DPV - K
I Invest in the project if NPV is positive.
I Observation: Higher the r , smaller the NPV.
I Observation: r at which NPV = 0 is called the internal rate of

return (IRR).
IRR is problematic because (a) rates in the real world change
every period, and (b) IRR and NPV do not always lead to the
same decision.

I The above calculations have no uncertainty.
Alternative calculation of DPV include a ‘premium’ in addition to
ri (ri + pi ) to adjust for this.
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Pricing bonds



Pricing a GOI bond
I A bond has cashflows (c1, t1), (c2, t2), . . . , (cN , tN).

I Then the price is:
P =

∑ ci

(1 + r)ti

I GOI bonds are credit risk free, so there is no uncertainty
premium.

I In the real world, r changes with t .
Eg, Rs.100 to be received one year later has a different value
today compared to the same Rs.100 to be received ten years
later.

I In that case, the DPV notation used for a cashflow C at date T is:

P =
C

(1 + zt )T

I zt is called the risk-free interest rate or
the “zero coupon rate” at t .
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A term structure of interest rates

I One unique “interest rate in the economy” does not exist. There

is a different interest rate for every different maturities, z(t).

I The graph of maturity t on the x-axis and corresponding interest
rates zt on the y-axis is called the term structure of interest
rates.

I It is also called the spot yield curve or the zero coupon yield
curve (ZCYC).

I Features of the ZCYC for any country:

I In general, this graph is not flat.
I It can change every day.
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Data sources on ZCYC for India

I In India, NSE-WDM and CCIL calculate a daily ZCYC from
market prices of GOI bonds.

I NSE-WDM is the Wholesale Debt Market at the National Stock
Exchange.

I CCIL is the Clearing Corporation of India Ltd.

I Time series of daily ZCYC from 1/1/1997 onwards.



Pricing equity



Equity

I Equity is harder than bonds in that future cashflows are
uncertain.

I Equity can pay some cashflow (dividends) at some undefined
future time.

I If a company is successful, dividends grow, and often quite fast.

I If the company fails, dividends go to zero!!

I This gives a possible range for stock prices: 0 . . .∞.



Pricing stocks

I The value of a stock could be calculated as the DPV of expected
dividends.

V =
∞∑

t=1

E(dt )

(1 + RE )t

where RE is the return on equity.

I This can also be written as:

V =
∞∑

t=1

δtE(dt )

where δt is 1
(1+RE )t and is called the discount rate.

I In an ideal situation,
Price of the stock, P should be V .



Traditional accounting methods for V

I Stockholders information about the firm’s income, cashflows to
debt holders and other repayments.
This is one possible proxy for dividends.

I Another source of information is past dividends.

I Two models of stock price based on accounting information: free
cashflow and the dividend discount model.

I They assume:

1. Consensus on the expected dividend payout, E(dt )
2. Consensus on the discount rate, or the return on equity, RE .
3. Equity is infinitely lived.

I Developed economies have financial analysts that forecast
future cashflows from the balance sheets/P&Ls of companies.
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Stock price assuming a constant E(d)

I If E(di ) = di is a constant for every time period,

I Then for infinitely lived equity, Pi = di/ri .

I Alternatively, assume a holding period (upto t = 1 . . .T ). Then

Pi =
T−1∑
j=1

di

(1 + ri )j +
DPVT

(1 + ri )T
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Example of pricing stocks assuming a constant E(d)

I Geojit Securities Ltd. has a policy of paying out dividends of
Rs.2 every year.

I If the required rate of return for Geojit Securities is 3.5%, what is
the price of Geojit Securities?

I The equity is valued as a perpetuity as follows:

PGSL =
2

1.0351 +
2

1.0352 +
2

1.0353 + . . .

= 2/0.035
= Rs.57.1429
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Example of pricing stocks assuming a changing E(d)

I Suppose after three years, Geojit Securities Ltd. plans to change
the dividend payout from Rs.2 every year to Rs.3 every year.
What is the price of Geojit Securities?

I After three years out, the stock is valued as a perpetuity as
follows:

PGSL4 =
3
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3
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3

1.0353 + . . .

= 3/0.035
= Rs.85.7143

I From today, the pricing becomes:
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2

1.0353 +
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1.0354

= Rs.80.2983
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Pricing stocks assuming growth in dividends

I If dividends are earnings paid out, then it is troublesome to
assume that there is no growth in cashflows.

I The adjustment is the valuation model assuming a constant rate
of growth in dividends of gi for firm i .

I Then

Pi =
di

(1 + ri )
+

di (1 + gi )

(1 + ri )2 +
di (1 + gi )

2

(1 + ri )3 + . . .

=
di

(ri − gi )



Pricing stocks assuming growth in dividends

I If dividends are earnings paid out, then it is troublesome to
assume that there is no growth in cashflows.

I The adjustment is the valuation model assuming a constant rate
of growth in dividends of gi for firm i .

I Then

Pi =
di

(1 + ri )
+

di (1 + gi )

(1 + ri )2 +
di (1 + gi )

2

(1 + ri )3 + . . .

=
di

(ri − gi )



Example of pricing stocks assuming a constant growth
of dividends

I Suppose Geojit dividends grow by 2% every year.
What is the new valuation of Geojit equity?

I PGSL = 2
(0.035−0.02) = Rs.133.33



Why stock prices are hard to estimate

I The DPV of the stock depends supremely on your understanding
about:

1. future dividend growth, and
2. the required return on equity.

I Slight changes to these views generate large changes in the
price!



Sensitivity of stock prices: a simulation
Starting point: d0 = 10
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Small changes in E(gD) and/or E(RE )→ Large changes in prices.



Observation about asset pricing

I Asset pricing uses cashflows and asks what the RE should be
for the risk characteristics of the firm.

I It requires forecasting expected cashflows at future dates.

I Even if RE were known, valuation is hard!!

I Particularly for stocks: DPV is very sensitive to slight changes in
either growth of dividends or return on equity.
As views on these two numbers change, stock prices fluctuate.
This could happen in real-time.
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Observations about accounting valuation models

I Accounting valuation models are useful for pricing firms that are not
listed. For example:

I The P/E ratio of the firm can be derived as the inverse of
the discount rate.

I The P/E ratio across firms in a particular industry tend to be
similar.

Then stock price of a new company with Ej earnings at the end of the
year, can be approximated as Pj = Ej ∗ (P/E)ind .

I There is a thriving industry of analysts whose make forecasts of
earnings and the required rate of return, even for listed companies, in
developed markets.

I The models are difficult to implement.
I Prices from these models are often 6= traded market prices.



HW: Adopting a firm of your own

I Familiarise yourself with the CMIE Prowess database.
I Pick a non-financial firm with market value (market

capitalisation) in excess of Rs.5000 crore.
The firm should be a listed firm, with at least 85 percent
trading frequency in the last two years.

I Make a simplified BS for 2014-15 and 2015-16.
I Make a simplified P&L for 2014-15.
I Trace the flow of resources between the two financial

years.
I Create a time series of the dividend payout of your firm.

Plot it as a PDF file using R.



Thank you.


