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Information processing by markets

I Old economist notion of efficient capital markets: aggregate
supply and demand in a competitive market, with rational traders
who maximise profits.

I Market notion of efficient capital markets: Speculators trade in
information: huge profits to be made if they are right, and huge
losses if they are wrong.

I Any new information is rapidly assimilated into prices through
such a profit-maximisation.

I The resulting equilibrium price from an “efficient market” does a
pretty good job of embedding forecasts of future dt and a
sensible risk premium ∆.
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Consequences of efficient markets: price behaviour

I If traders process information efficiently and immediately into
prices, the current price reflects all relevant information perfectly.

I =⇒ prices move only in response to news and information.

I =⇒ if you know price today, you need to know news tomorrow
to predict price tomorrow.

I But news is unforecastable =⇒ prices are unforecastable.

I Differing views between economists and traders about price
efficiency.
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Recap on market efficiency

I In an efficient market, all speculators know the historical prices.
=⇒ Competition between them will eliminate opportunities for
earning money “for free”. (Zero-profit condition under perfect
competition.)

I In the limit, when millions of smart speculators are in play, prices
should become non-forecastable.

I Simplest model: E(P) = Pt where Pt is the last observed price
=⇒ E(P − Pt ) = E(r) = 0.

I Simplest model of EMH: returns are homoscedastic normal, with
a mean µr = 0.

I Also, “returns are homoscedastic normal” is a conveniently
testable statement.

I Reality doesn’t have to oblige.



Market prices and returns



Definition of returns

I Investment decisions are based on expected returns, E(r).
I The market produces a time-series P1, P2, . . .
I We focus on the percentage change in prices as the

“returns”, rt .

rt = 100× log Pt/Pt−1 = 100 ∗ (ln(Pt )− ln(Pt−1))

Here Pt is the “Adjusted Closing Price” (ACP in Prowess).
I One way to get E(r) is from the distribution of (r̄).

(Assumption?)



Numerical example using Britannia prices, source:
NSE website

> brit <- read.csv(file="britannia.csv", skip=1,
sep=",", col.names=c("Symbol","Series","Date",
"PrevClose","Open","High","Low","LTP","Closing",
"AvPr","Quantity","Turnover","NumTrades"))

> tail(brit)
> Symbol Series Date PrevClose Open High Low LTP

1976 BRITANNIA EQ 26-Dec-2016 2831.20 2829.90 2831.40 2780.00 2813.50
1977 BRITANNIA EQ 27-Dec-2016 2807.30 2810.25 2856.85 2781.55 2821.95
1978 BRITANNIA EQ 28-Dec-2016 2826.85 2830.00 2888.00 2830.00 2846.00
1979 BRITANNIA EQ 29-Dec-2016 2839.60 2835.00 2898.00 2828.90 2877.40
1980 BRITANNIA EQ 30-Dec-2016 2883.15 2905.00 2922.00 2870.00 2883.00
1981 BRITANNIA EQ 02-Jan-2017 2886.30 2901.10 2901.10 2865.15 2890.00

Closing AvPr Quantity Turnover NumTrades
1976 2807.30 2805.73 68000 1907.90 8314
1977 2826.85 2824.84 78676 2222.47 11720
1978 2839.60 2860.05 123554 3533.70 17006
1979 2883.15 2866.23 90143 2583.71 8816
1980 2886.30 2901.90 110334 3201.78 13373
1981 2886.45 2876.68 52245 1502.92 3552
>



Example: Britannia and Nifty, 2009 to 2016
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Numerical example calculating Britannia returns

> library(zoo)
> mydates <- as.Date(brit$Date, "%d-%b-%Y")
> pricesb <- zoo(brit$Closing, order.by=mydates)
> returnsb <- 100*diff(log(pricesb))
> tail(returnsb)

2016-12-26 2016-12-27 2016-12-28 2016-12-29 2016-12-30 2017-01-02
-0.84774827 0.69398502 0.45001797 1.52202493 0.10919586 0.00519683

> summary(returnsb)
Index returnsb

Min. :2009-01-05 Min. :-148.12043
1st Qu.:2011-01-05 1st Qu.: -0.84901
Median :2012-12-31 Median : 0.00891
Mean :2013-01-02 Mean : 0.03928
3rd Qu.:2015-01-01 3rd Qu.: 0.99999
Max. :2017-01-02 Max. : 14.67419
> sd(returnsb)
[1] 3.728062
>
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Nifty returns
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Numerical example of the histogram of Britannia
returns vs. a gaussian distribution

> simulb <- rnorm(10*length(returnsb),mean(returnsb),
sd(returnsb))

> pdf("2016to2009histb.pdf", width=4.0, height=2.8,
bg="cadetblue1", pointsize=8)

> par(mai=c(.8, .8, .2, .8))
> plot(density(returnsb), col="red",lwd=3)
> lines(density(simulb), col="black", lwd=4)
> dev.off()



Britannia vs. a gaussian distribution
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Nifty vs. a gaussian distribution
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EMH and implications for the data
generating process of price



Setting up a mathematical model

I Rational expectations about prices which contain all information
at all times implies that:

Pt+1 = EPt+1 + εt+1

Et (Pt+1 − EtPt+1) = Etεt+1 = 0

I The orthogonality property: εt+1 must be independent of all
information at t .
For example, εt+1 = ρεt + νt+1 violates EMH.

I Think of εt+1 as unexpected profit/loss.
=⇒ the only way to make expected profits is to be informed:
know εt+1 before everyone else.
(Note: The information has to eventually become public.)



Setting up a mathematical model

I Rational expectations about prices which contain all information
at all times implies that:

Pt+1 = EPt+1 + εt+1

Et (Pt+1 − EtPt+1) = Etεt+1 = 0

I The orthogonality property: εt+1 must be independent of all
information at t .
For example, εt+1 = ρεt + νt+1 violates EMH.

I Think of εt+1 as unexpected profit/loss.
=⇒ the only way to make expected profits is to be informed:
know εt+1 before everyone else.
(Note: The information has to eventually become public.)



Prices as a random walk
I Pt+1 = Pt + εt+1 and
ε ∼ iid(0, σ2).

I Then
EtPt+1 = Pt + Etεt+1 = Pt

I Implications:
I Innovations to the DGP are permanent.

log Pt+1 = log Pt + εt

And, log Pt+1 = log Pt−k +
k∑

i=0

εt−i

I The best estimate of the forecasted price Pt+1 is Pt .
I This is true for forecasts at all horizons, h, in the future.

E(Pt+h) = Pt

I These are also properties of a time series with a unit root.



A random walk is non-forecastable

I Pt+1 = Pt + εt+1

I Forecastability is focussed on any new information/pattern, εt+1
over Pt . This is a problem because:

1. εt+1 tends to be a small change over Pt .
2. εt+1 is a random number.

εt tends to be white noise.

I Speculators focus on picking patterns in the data, either in the
short run or the long run.
But random draws also have some non-zero probability of (a)
runs and (b) temporal serial correlation.



The market efficiency debate, part I

I A strong statement: zero forecastability of returns.

I Some people get excited when a t stat of 2.5 turns up, they have
“rejected the H0 of market efficiency”.

I There is a lot of talk about “inefficient markets” based on such
rejections.

I But no forecasting equation has substantial power.

I H0 can be rejected, but with a tiny R2, the process is mostly
white noise!

I This is a statistical problem, not an economic one.
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The market efficiency debate, part II

I All tests of EMH are conditional on whether we have the correct
model of expected returns.

I Example: the random walk assumes zero expected returns.
But a zero expected return on an investment of any horizon is
not economically sensible!

I Alternative model:

1. No dividend.
2. But investors hold as long as expected capital gains are

constant.
Rt+1 = k + εt+1

where εt+1 is iid and independent of Ωt .

I Then, log Pt+1 = k + log Pt + εt+1

Random walk with a drift term, where k can be the sum of the
risk-free rate and an equity premium.

I Tests of randomness that ignore this infer that EMH is violated.



Alternative model: prices as martingale processes

I The martingale process: expectations are conditional on
information at t .

1. If x is random discrete variable, then E(X ) =
∑J

i=1 πiXi .
2. If x is uniform discrete variable, then

E(X ) =
∫

i = −∞∞Xf (X )dX .
3. If xt is a martingale variable, then Et (xt+1|Ωt ) = xt

I Since prices are log-normally distributed, then prices being
martingale processes means:

log pt = log pt−1 + εt

where εt is iid as N(0, σ2).

I Implication: Et (Rt+1|Ωt ) = 0.
This is the property of a fair game.
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Implication of EMH tests with martingale prices

I EMH is defined as having the fair game property for unexpected
stock returns.

I "Asset prices fully and instantaneously rationally reflect all
available relevant information." (Fama 1969,1971)

I "Asset prices reflect information to the point where the
marginal benefits of acting on information (the profits to be
made) do not exceed the marginal costs."

I On average, the abnormal/unexpected return is zero.

Reference: John Y Campbell, Andrew W. Lo, Craig A. MacKinlay,
1995, “The econometrics of financial markets”, published by
Princeton University Press.
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EMH: Implications

I If price is the correct discounted value of future cashflows,
then:

1. There are no arbitrage opportunities: you only get extra
returns if you take on additionl risk.

2. E(r) of any asset is a function only of the risk premium on
equity.
=⇒ E(excess returns) across any pair of assets ought not
to differ persistently

I Both hold given a fixed information set.
I Research question: Does no-arbitrage actually hold in an

efficient market?



Tests of EMH



Categories

I Tests of EMH are categorised depending upon the
information captured by market prices.

I The test categories are:
1. Weak form: tests based on publicly observed information.
2. Semi-strong form: based on information that is originally

observed by a few, and then becomes publicly disclosed.
3. Strong form: based on information that only a small set of

investors could be privy to.
I For example, testing for autocorrelation in a price series is

a weak form test of EMH.
The tests are based on prices, which are publicly
observed.

I Most tests of EMH are semi-strong form.



Tests of EMH

I Weak form: ACF, Variance Ratio analysis (Nelson and
Plosser 1985, Summers 1988).
Effects studied: serial correlation, seasonal effects (such
as day of week, budget day, end of year effects).

I Semi-strong form: Event–study analysis (Brown and
Warner 1980, 1985).
Effects studied: corporate action (such as dividend
announcements, bonus issues, rights issues, debt issues,
defaults, etc), institutional changes (such as introduction of
derivatives markets, changes in laws to
shareholders/creditors, etc).

I Strong form:
Effects studied: mutual fund/institutional fund performance
wrt stock market index.



Statistical vs. economic tests of EMH

I Statistical tests of EMH are joint tests of the market
efficiency in the context of a given asset pricing model.
Example, all the first tests of EMH were based on the null
of the random walk model of prices.

I Modification: Tests incorporate empirical deviations from
normality such as skewness and heteroscedasticity.

I Economic tests focus on whether the market has arbitrage
opportunities or not:

I Are excess returns are independent of information sets?
I Is there persistently abnormal returns to trading strategies?
I Is the market price equal to the fundamental value?



EMH: some early references

I The Variation of Certain Speculative Prices, Benoit Mandelbrot,
Journal of Business, Vol. 36, No. 4 (Oct., 1963), pp. 394-419

I Proof that properly anticipated prices fluctuate randomly, Paul
Samuelson, Industrial Management Review, 41-49, 1965.

I Informationally efficient market,
I prices are unforecastable if they are “properly anticipated”.

I Random walks in stock market prices, Eugene Fama, Financial
Analysts Journal, pages 55-59, 1965.

I Measuring the statistical properties of prices.
I Resolving the difference between technical (time series of

prices) and fundamental (accounting and financial data)
analysis.



HW

1. Obtain the full ACP time-series from Prowess for your
company. Calculate returns for the series.
1.1 Break the time series up into halves - Period I and Period II.
1.2 Do the runs test for the full period, and for periods I and II

separately.
1.3 Graph the ACF and estimate an AR model for the full

period, and for the half periods separately.

2. Get the time series for the NSE-50 (Nifty) index and repeat
the above tasks for this time series as well.
What are any qualitative and quantitative differences
between the time series aspects of the company vs. Nifty.



The remaining slides

I A few standard tests of weak-form efficiency:
I Runs tests
I AutoCorrelation Functions
I Variance Ratios



Statistical tests of EMH: tests of randomness



Runs test

I A returns sequence as follows – +,+,+ – is

1. a positive run and
2. a run of length 3.

I Runs can have different directions (+,−,0) and different lengths.

I Randomness of returns implies certain properties of runs.



Autocorrelation coefficients

I If a series of data is “random”, then it will have no significant
autocorrelation coefficients.

I H0 : ρ = 0

I The standard deviation for the autocorrelation coefficient
approximated by

σρ = 1/
√

N



ACF for M&M daily returns

0 5 10 15 20 25 30 35

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

Lag

A
C

F



AR model for daily returns

Coefficient(s):
Estimate Std. Error t value Pr(>|t|)

ar1 0.001966 0.019062 0.103 0.9178
ar2 -0.014461 0.019038 -0.760 0.4475
ar3 -0.010136 0.019040 -0.532 0.5945
ar4 -0.005683 0.019041 -0.298 0.7653
ar5 -0.048529 0.019039 -2.549 0.0108 *
ar6 0.047550 0.019061 2.495 0.0126 *
intercept 0.082461 0.056337 1.464 0.1433
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Fit:
sigma^2 estimated as 8.68



To watch out for: small chinks in randomness!

I Daily σ of returns was 2.95;
This implies variance of 8.7025.

I The AR(6) residual has variance of 8.68.
This comes to a R2 of 0.0025.

I Even if there appears to be statistically significant correlation,
we know:
smart speculators are attacking the data every day, discovering
patterns, making money on them, and thus eliminating these
correlations,
if they find it economically efficient to do so.

I EMH is a story about speculators who learn.
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Summary statistics about weekly returns

> rw <- prices2returns(p)
> summary(r)

Index r
Min. :1990-01-12 Min. :-37.9039
1st Qu.:1994-02-25 1st Qu.: -3.4892
Median :1998-01-09 Median : 0.1102
Mean :1997-12-25 Mean : 0.3082
3rd Qu.:2001-11-23 3rd Qu.: 3.9093
Max. :2005-10-07 Max. : 30.3682

> sd(r)
[1] 6.551645
>
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AR model for weekly returns

Estimate Std. Error t value Pr(>|t|)
ar1 0.04835 0.03516 1.375 0.1691
ar2 0.03169 0.03514 0.902 0.3671
ar3 0.05501 0.03513 1.566 0.1174
ar4 0.05286 0.03510 1.506 0.1320
ar5 -0.06485 0.03510 -1.848 0.0646 .
ar6 -0.01281 0.03511 -0.365 0.7152
intercept 0.30832 0.23007 1.340 0.1802
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Fit:
sigma^2 estimated as 42.37



Example: Nifty, 90 days – segment 1
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Example: Nifty, 90 days – segment 2
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Example: Nifty, 2000 days
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Variance ratio: definition

I If innovations are independent, and the distribution has
constant variance, then σ2

K , the variance of returns over k
periods is Kσ2

1.
I The Variance Ratio at lag K is defined as VR(K ) where

VR(K ) =
V (K )

V (1)

1
K

I Under the null of iid returns, VR(K ) = 1 for any K .



From the idea of
√

T scaling to a test

I Okay, so we believe that in a fairly efficient, homoscedastic
market, we will get

√
T scaling of volatility.

I But how can we look at data from the realworld and reject
the null?

I This need a test.



Calculating VR(k)

I In order to calculate V (k), daily returns are aggregated
over k periods.

I Cochrane 1988 formulation:

VR(k) ∼ 1 + 2
k−1∑
j=1

k − j
k

ρ̂j

ρ̂j is the estimated autocorrelation coefficient at lag j .
I Fama and French 1988, 1989:

rt,t+k = αk + βk rt−k,t + εt,t+k , and

βk ∼ ρ̂1 + 2ρ̂2 + . . .+ (k + 1)ρ̂k+1 + . . .+ ρ̂2k−1

k + 2[(k − 1)ρ̂1 + . . .+ ρ̂k−1]

where βk is distributed around 0, and negative values
indicate mean reversion.



Inference for VR(k)

I The test statistic has to be adjusted for the
heteroskedasticity.

I Lo, Mackinlay (1988): a heteroskedasticity consistent
estimator for VR(k).

√
T (VR(k)− 1) ∼ N(0, θk )

where

θk = 4
T/k−1∑

i=1

(
1− i

k

)2

δ̂i

δ̂i = T
T∑

j=i+1

σ2
j σ

2
j−i

σ4
j

I Kim, Nelson, Startz (1988) use bootstrap and
randomisation to infer the distribution for the VR.



Economic interpretation of the VR observations

I When prices show positive deviations from 1 in the short
term, followed by negative deviation in the longer term, it is
referred to as the “mean-reversion” property of prices.

I Prices over-react and overshoot the “mean-level” prices
initially (VR > 1).

I Prices then “revert” to the mean over a longer period.
I The earlier literature also identified varying magnitudes of

mean-reversion in different periods.
For example, mean-reversion was much stronger in the
pre-WWII period as compared to in the post-WWII period.



Causes for mean-reversion

I On the short-run, bid-ask spread causes a negative serial
correlation: Roll (1984).

I Across stocks of different liquidity, those with higher
liquidity will have smaller serial correlation: Hasbrouck
(1991).

I For a portfolio containing stocks of different liquidity, the
same information will get absorbed sooner by some
stocks, a little later by others.
This ought to cause positive serial correlation in an index:
Lo and Muthuswamy (1996).



Causes for mean-reversion

I HF Finance: These deviations are even more pronounced
when the horizon reduces to within the day – to
hour/minutes/seconds.

I The behaviour of the VR using extremely high frequency
data becomes a story of how information transmits into
prices.
This can be studied at the level of individual stocks, pairs
of stocks and the entire market.

I HF data helps trace out the path of market efficiency.



Serial correlation in Nifty, March 1999 to February
2001
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Serial correlation in IT stocks, March 1999 to February
2001
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Serial correlation in manufacturing stocks, March 1999
to February 2001
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