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Goals

I What is a portfolio?

I Asset classes that define an Indian portfolio, and their markets.

I Principle of diversification

I Inputs to portfolio optimisation: returns and risk of assets.

I Optimisation framework: mean-variance approach, Markowitz

I Capital allocation.
I Efficient portfolio frontier.
I Leverage.



Understanding a portfolio



What is a portfolio

I A set of assets together make a portfolio.
As opposed to an investment in a single asset.

I A portfolio is parameterised by:
I Total value of the investment.
I Assets held in the portfolio.
I Fraction of the value invested in each asset.

These are the weights of each asset, and is typically
denoted as wi for asset i .



Elements of portfolio choice

I Like any investment, a portfolio is measured by the amount
of return it gives for the risk taken.

I Portfolio choice follows two stages:
1. Capital allocation problem: how much of riskless vs. risky

assets to hold?
2. Security selection defining the risky asset:

I What assets constitute the riskless portfolio?
I What constitutes a risky portfolio?

I Choices driven by the principle of diversification.
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Assets to construct Indian portfolios

Riskless Govt. bonds
Risky Corporate bonds, firm equity, commodities,

foreign exchange, foreign equity, foreign gov-
ernment bonds

Leverage/Risk
management

Derivatives



Setting up the portfolio choice problem



Rules of the game

I A (competitive, liquid) market where n assets are traded.

I Given an individual’s utility function, how does she allocate her
wealth among these n assets?

I Asset returns can follow any distribution.

I In a gaussian world, returns on one asset is a random variable
x , with a univariate distribution with parameters, (µx , σ

2
x ).

I For returns on two assets, (x , y), bivariate distribution with
parameters, (µx , µy , σ

2
x , σ

2
y , σxy or ρxy )

I n-asset returns (~r) have a multivariate distribution with
parameters, (~µi ,Σr ) where:

I Σr is a symmetric n × n matrix with
I n σ2

i and
I n × (n − 1) terms for σ2

i,j where
I σi,j = ρi,jσiσj where
I ρi,j is the correlation between returns of assets iandj .



Interest rates vs. asset rates of return

I Risk-free interest rate is rf .
rf is assumed to be known upfront and fixed.

I ra is the return obtained in investing in an asset.

I ra is a random variable with a known distribution at the time the
investment is made.



Example: E(rp), σp calculation

I Suppose there are two assets:
Asset 1: E(r1) = 0.12%, σ1 = 0.20%.
Asset 2: E(r2) = 0.15%, σ2 = 0.18%.
σ1,2 = 0.01

I Portfolio weights = 0.25, 0.75

I What is E(rp), σp?



Example of E(rp), σp calculation

I Expected returns is a weighted average of individual returns.

E(rp) = w ′E(ra)

= (0.25 ∗ 0.12) + (0.75 ∗ 0.15)

= 0.1425

I Variance of the portfolio is σ2
w is:

σ2
p = (0.252 ∗ 0.202) + (0.752 ∗ 0.182) + 2 ∗ (0.25 ∗ 0.75 ∗ 0.01)

= 0.024475

σp =
√
σ2

p = 0.15644



Example 2: E(rp), σp calculation for a 3-asset portfolio

I Suppose we add one more asset to our set of 2:
Asset 1: E(r1) = 0.12%, σ1 = 0.20%.
Asset 2: E(r2) = 0.15%, σ2 = 0.18%.
Asset 3: E(r2) = 0.10%, σ3 = 0.15%.
σ1,2 = 0.01, σ1,3 = 0.005, σ2,3 = 0.008

I Portfolio weights = 0.25, 0.25, 0.5

I What is E(rp), σp?



Example: E(rp), σp calculation

We calculate it using the same equations as before:

E(rp) = w ′E(ra)

= (0.25 ∗ 0.12) + (0.25 ∗ 0.15) + (0.5 ∗ 0.10)

= 0.1175

σ2
p = (0.252 ∗ 0.202) + (0.252 ∗ 0.182) + (0.52 ∗ 0.152) +

2 ∗ (0.25 ∗ 0.25 ∗ 0.01) + 2 ∗ (0.25 ∗ 0.5 ∗ 0.005) +

2 ∗ (0.25 ∗ 0.5 ∗ 0.008)

= 0.015

σp =
√
σ2

p = 0.12



E(rp), σp for different w̄

For an alternative portfolio, w̄ = 0.25,0.5,0.25 we have E(rp, σp) as:

E(rp) = w ′E(ra)

= (0.25 ∗ 0.12) + (0.5 ∗ 0.15) + (0.25 ∗ 0.10)

= 0.13

σ2
p = (0.252 ∗ 0.202) + (0.52 ∗ 0.182) + (0.252 ∗ 0.152) +

2 ∗ (0.25 ∗ 0.5 ∗ 0.01) + 2 ∗ (0.25 ∗ 0.25 ∗ 0.005) +

2 ∗ (0.25 ∗ 0.5 ∗ 0.008)

= 0.017

σp =
√
σ2

p = 0.13

For this portfolio, we have got both higher returns and higher risk
rightarrow diversification.



Understanding diversification

I Diversification is the reduction in variance of the portfolio returns.
For instance, the portfolio variance of the last example is lower
than either asset variance.

0.15644 < 0.20,0.15644 < 0.18

I Diversification is driven by two components:

1. Holding a large number of assets→ weights on each (wi ) is
small.
→ effect of asset i on σp is w2

i .
Small wi → smaller w2

i → smaller the σp.
2. Pooling of uncorrelated events:

Small ρi,j → smaller the σp.
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Summary: portfolio characteristics

I Expected return on the portfolio: E(rp) =
∑n

i=1 wiE(ri ).

I Variance of the portfolio: σ2
p =

∑n
i=1 w2

i σ
2
i + 2

∑n
i=1

∑n
j=1 wiwjσij

I Matrix notation for portfolio optimisation:

I k assets, each from a normal distribution.
I Multivariate representation:

~rk ∼ MVN(µ,Σ)

I µ is K × 1
I Σ is K × K and is a positive definite symmetric matrix.
I Portfolio weights in k assets are a set of weights wk .
I Then, the portfolio features are calculated as:

rp ∼ N(w ′µ,w ′Σw)



Elements of portfolio choice



Choosing between portfolios

I Two assets, (A,B) where

(A,B) ∼ MVN(~µ, ~Σ)

~µ is 2× 1 with µA, µB.
and ~Σ is 2× 2 with σ2

A, σ
2
B, ρAB.

I Investment in one asset is w , and in the other is 1− w .

I Porfolio optimisation problem: for the parameters in ~µ, ~Σ,
What is the “optimal” w?



Values of w

I ~w sums to one.

I Typically, we consider each wi to fall between 0 and 1.

I In a country where short-selling is permitted, wi can be less
than 1, or greater than 1.

I Choosing the portfolio means choosing a vector of weights w .



Mean-variance approach: using the E(rp)− σp graph

I Every choice w induces two numbers - E(rp) and σ2
p .

I A key analytic tool to choose w : E(ra)− σa graph.
A graph with E(rp) on the y–axis and σ on the x–axis.

I “For all possible portfolios containing the same assets, but in
different proportion, plot the portfolio as a point on the E(r)− σ
graph.”

I This is a simple 2-D graph, regardless of how many assets you
have!



Varying w from 0 to 1 in a E(rp)− σp graph



Reading the E(rp)− σp graph

I The previous graph shows how E(rp)− σp combination changes
as w changes.

I Some value of w for which E(rp) is the maximum.

I Some value of w for which σp is the minimum.

I w for maximum E(rp) and minimum σp is not the same.



What happens if ρ changes?

E(r)

sigma

A

B

P



Reading the E(rp), σp graph when ρ changes

I ~AB is (E(rp), σp) for all non–negative linear combinations
of A and B, when ρAB = 1.

I ~PA and ~PB define the boundaries of (E(rp), σp)
∀(−1 < ρAB < 1).

I The curve AB defines (E(rp), σp) for all non–negative
linear combinations of A and B for some intermediate fixed
value of ρAB.



Capital allocation



Choosing between risky and risk-free

I What if A is the risk-free asset?

I Then, E(rp) = wrf + (1− w)E(rB)

I (σ2
p) = w2σ2

rf
+ (1− w)2σ2

B + 2w(1− w)covrf ,B,
where

I σrf = 0
I covrf ,B = 0

I (σ2
p) = (1− w)2σ2

B,

Or, σp = (1− w)σB

Expected returns is a linear combination of expected returns as
usual.
But risk is a function only of risky asset variance.



Capital allocation – introducing rf

Sigma_A = 0

E(r_p)

Sigma_p

Br_B

Sigma_B

r_p (w=0.5)

Capital allocation

r_A =

r_f

Sigma_p (w=0.5)



Interpreting the capital allocation graph

I Remarkable result for the solution to the capital allocation
problem:
A portfolio of the risk-free and one risky asset has an
E(rp)− σp graph which is linear in both E(rp) and σ.
As w increases, σp decreases linearly.

I At w = 1, σp = 0.
I At w = 0, σp is the maximum.



Leverage



Leverage in w

I In the above example, σp is bounded by σB because w falls
between 0 and 1.

I By implication, the investor cannot access risk (or returns) that
are higher than σB.

I This can change if we have short-selling.

I Short-selling means w can be negative.
w is negative when you can borrow at the risk-free rate to invest
in the risky security, B.

I Called leverage.

I With leverage, you can create portfolios with σp > σB.
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Example of leverage
I An investor has Rs.1 million to allocate between the risk-free

asset and risky asset B.

I The data shows that rf = 7%, rB = 35%, σB = 40%

I Possible combinations of E(rp, σp) are:
I w = 0.5→ the portfolio is the riskless asset:

E(rp) = 0.5 ∗ 7 + 0.5 ∗ 35 = 21%; σp = 0.5 ∗ 40 = 20%;
I w = 1→ the portfolio is purely risky asset.

E(rp) = 35%; σp = 40%

I With leverage:
I She borrows half a million from the bank to invest in B.
I w = −0.5,

E(rp) = −0.5 ∗ 7 + 1.5 ∗ 35 = 49%; σp = 1.5 ∗ 40 = 60%

This is a leveraged portfolio: the size of the investment is more
than the size of the initial wealth.

I Note: The risk in the last portfolio is the highest, but the return is
also linearly higher.
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Optimisation step 2: selecting the optimal risky
portfolio

I The capital allocation problem is always a linear one.
The level of return desired drives the quantum of
investment in risky vs. riskless asset.

I Next question: there are more than just two assets.
Out of all possible combinations of N risky assets, what is
the “optimal” risky portfolio?

I We know that the return-risk trade-off among only risky
assets is not linear: some combinations of assets give a
lower return for a higher level of risk.

I What does this combination of risk-return look like?
Use a simulation.



Simulating the E(rp)− σp graph for a set of
7-stocks



Example: Mean-variance of weekly returns

> colMeans(r)
RIL Infosys TataChem TELCO TISCO TTEA Grasim

0.31392 0.15702 0.40761 0.29796 0.44311 0.12302 0.32051

> print(cov(r), digits=3)

RIL Infosys TataChem TELCO TISCO TTEA Grasim
RIL 29.08 11.01 9.2 12.85 15.93 11.27 8.13
Infosys 11.01 61.23 10.1 4.06 8.72 7.48 7.60
TataChem 9.19 10.11 33.9 15.75 14.51 13.75 12.25
TELCO 12.85 4.06 15.7 38.17 20.16 16.60 7.64
TISCO 15.93 8.72 14.5 20.16 32.94 13.95 11.79
TTEA 11.27 7.48 13.8 16.60 13.95 29.64 8.02
Grasim 8.13 7.60 12.2 7.64 11.79 8.02 34.17



Example: Creating portfolios randomly
load(file="10.rda")
mu = colMeans(r)
bigsig = cov(r)
m = nrow(bigsig)-1
N = 20
w = diff(c(0,sort(runif(m)), 1));

rb = sum(w*mu);
sb = sum(w*bigsig*w);

for (j in 2:N) {
w = diff(c(0,sort(runif(m)), 1));
r = sum(w*mu); rb = rbind(rb,r);
s = sum(w*bigsig*w); sb = rbind(sb,s);

}

d = data.frame(rb, sb);
d$sb = sqrt(d$sb);
pdf("10_2.pdf", width=5.6, height=2.8, bg="cadetblue1", pointsize=8)
plot(d$sb, d$rb, ylab="E(r)", xlab="Sigma", col="blue")



Example: E(r)-σ graph, N=20 portfolios
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Example: E(r)-σ graph, N=2000 portfolios
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Observations from the simulations

I The characteristics of “random portfolios” (where the weights on
the securities are randomly selected) show a convex curve for
different ~w .

I There is a minimum value of σp: no matter what combination of
w , there is no way of reaching a lower σp with this set of assets.

I There are a set of portfolios which no-one would want to hold:
where E(rp) decreases as σp increases.

I We need to focus on those portfolios where E(rp) increases as
σp increases.



Harry and the Optimal Portfolio



The Markowitz optimisation

I We observe that the return-risk trade-off among only risky
assets is not linear: some combinations of assets give a lower
return for a higher level of risk.

I The Markowitz framework offers a closed form solution to what is
the optimal risky portfolio for any person.
Calculate ~w in order to minimise risk for a given level of
return.

I Or:
For a given level of E(w ′µ), how can we find the lowest
possible w ′Σw?
where µ,Σ are known.



The Markowitz model

I There are N assets.

I Define a set of asset weights w1 . . .wN such that

1. No contraints on wi other than they sum to one.
2. When the country imposes restrictions on short selling, you

may need to impose wi ≥ 0.
3.

∑
wi = 1, and

4. For a chosen value of E(rp), σp is minimum.

I Solution – use Langrange multipliers to solve this optimisation
exercise: to find ~w such that:

minimise 1
2

∑N
i,j=1 wiwjσij

subject to
∑N

i=1 wiE(ri ) = E(rp)

∑N
i=1 wi = 1



Characteristics of portfolios in an N–asset universe

I Even with three or more assets, the feasible region of the
portfolio returns and risk is a 2-D area.

I The area is convex to the left – ie, the rise in E(rp) is slower than
the increase in σp.

I The left boundary of the feasible set is called the “portfolio
frontier” or the “minimum variance set”.

I The portfolio with the lowest value of σ on the portfolio frontier is
called the “minimum–variance point” (MVP).



E(r)-σ graph out of N=2000 portfolios
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What matters
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The role of preferences to getting a solution

I An investor who is “risk–averse” invests in the MVP portfolio.

I An investor who prefers not to invest in the MVP portfolio is said
to “prefer risk”.

I Will be no investment in the portfolios with expected returns less
than the MVP – called “inefficient portfolios”.
Those above are called the “efficient portfolios”.

I The set of all the efficient portfolios is called the “efficient
portfolio frontier ” (EFF).



The two–fund and one–fund separation
approach



The two–fund separation theorem

I Suppose we have two portfolios, P1 and P2, that lie on the
efficient frontier, which are defined with weights w̄1 and w̄2

I A convex combination of P1 and P2 –
αw̄1 + (1− α)w̄2,∀ −∞ < α <∞ – will also lie on the efficient
frontier!

I Implication:
With any two efficient frontier portfolios, we can create all
other efficient portfolios.

I Investor’s optimisation problem: specify E(r) and the efficient
portfolio frontier gives the correct wp.
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The Markowitz frontier with the risk–free asset

Capital Market Line

                      −−−−−−−−−−−−−−
                      (sigma_m)

sigma_p

Sigma_p

E(r_p)

Sigma_MVP

Efficient

Portfolio

Frontier

w = MVPr_MVP

r_f

Sigma_m

r_m
Market portfolio, m

r_p = r_f + (r_m − r_f)



The one–fund theorem

I The efficient set is now the tangent from rf to rm.

I This is the linear combination of rf and the tangent efficient
portfolio, M, and is the capital allocation line!

I What is different is that now the efficient risky portfolio contains
all risky assets.

I This leads to the one–fund theorem:
There exists a single portfolio, M, of risky assets such that any
efficient portfolio can be constructed as a linear combination of
the portfolio and the risk–free asset.



Implications of the one–fund theorem

1. If the one–fund theorem is true, then all economic agents
will buy only M in different proportions of their endowment.

2. The capital allocation line is a mathematical statement
about the rise in expected return that must reward a rise in
the risk (σ) of a portfolio.
The slope of this line is called the “price of risk”.



Simulation including the risk-free rate

What happens to the E(r)-σ graph for our portfolio optimisation
of six stocks, when we include a 0.12% weekly risk-free rate of
return?



Example: E(r)-σ graph, N=20 portfolios
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Example: E(r)-σ graph, N=3000 portfolios
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The Implementation Problem



Operationalising the Markowitz solution

I Operationalising Harry’s solution is simple as long as you have:

1. The correct values of ~E(ra).
2. The correct estimate of ~Σ.

I This requires the investor to input

1. an (N × 1) vector of E(r) and
2. an (N × N) Σ matrix of variances and covariances with

N(N + 1)/2 unique values.
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Operationalising the Markowitz solution

I These are difficult for an investor.

I The investor might be able to give a desired E(r) for the portfolio.

I They may even be able to identify E(r) for pairs of assets (for
instance, we think that the cement sector will do better than the
IT sector this year).

I However, the various E(r) have to be consistent (for instance,
we can’t think that cement will do better than IT, and IT will do
better than pharmaceuticals and pharmaceuticals will do better
than cement!).

I It is extremely difficult for investors to guess σ.



Operationalising the Markowitz solution

I These are difficult for an investor.

I The investor might be able to give a desired E(r) for the portfolio.

I They may even be able to identify E(r) for pairs of assets (for
instance, we think that the cement sector will do better than the
IT sector this year).

I However, the various E(r) have to be consistent (for instance,
we can’t think that cement will do better than IT, and IT will do
better than pharmaceuticals and pharmaceuticals will do better
than cement!).

I It is extremely difficult for investors to guess σ.



Operationalising the Markowitz solution

I These are difficult for an investor.

I The investor might be able to give a desired E(r) for the portfolio.

I They may even be able to identify E(r) for pairs of assets (for
instance, we think that the cement sector will do better than the
IT sector this year).

I However, the various E(r) have to be consistent (for instance,
we can’t think that cement will do better than IT, and IT will do
better than pharmaceuticals and pharmaceuticals will do better
than cement!).

I It is extremely difficult for investors to guess σ.



Operationalising the Markowitz framework

I Need estimates of both E(r) and Σ.

I Empirical tests show that historical estimates yields suboptimal
portfolio weights.

I Better alternatives come from asset pricing theory or time series
econometrics.

I Additional problem of dimensionality: as N tends to a large
number, the Σ matrix is non-linearly difficult to estimate.

I For every new asset that is included, N + 1 new numbers need
to be estimated.
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Getting better E(r) estimates: Black–Litterman (1992)

1. Start with a combination of αrf , (1− α)rm.
This gives us a set of weights on the risky assets.

2. Investors are presented with the weights on each asset -
they get the choice of changing the weights on which they
have an opinion.



References

I Chi-fu Huang and Robert H. Litzenberger, Foundations for
financial economics, published by North-Holland, 1988.
This gives a very good micro–economic foundation to the
Markowitz framework.



Homework

I Work through Example 6.1, Luenberger page 139, to understand
the idea of short–selling clearly.

I Work out example 6.9, Luenberger, page 159, and 6.10, page
161.
(Luenberger, pages 158-159, gives details on the portfolio
optimisation problem.)

I Work through the solution for the tangent portfolio in Luenberger,
page 167-168.

I Work through examples 6.12 and 6.13.

I Luenberger, page 174, explains market capitalisation weights.
Work through the numbers in Table 7.1 to get a concrete idea of
how to calculate these weights.


