Empirical evidence on CAPM and APT

Susan Thomas IGIDR, Bombay

22 September, 2017

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Goals

Testing CAPM

Testing APT

Testing CAPM

Testing CAPM using the time-series approach

- ► CAPM: \rightarrow E(R_{it}) $r_f = \alpha_i + \beta_i$ E($R_m r_f$) where CAPM says: $\alpha_i = 0$.
- Testing approach:
 - $\epsilon_{it}, \epsilon_{jt}$ are individually iid.
 - Assume \vec{r} is jointly normal, use MLE. Data is panel with $i = 1 \dots N$, $t = 1 \dots T$.
 - But E(R_m − r_f) is the same, ∀i. Use OLS for each i, t = 1...T to estimate α_i.

(日) (日) (日) (日) (日) (日) (日)

1970's: Papers find that α_i = 0.
 Later research find opposite results.

Testing CAPM using the cross-sectional approach

- The Securities Markets Line: linear relationship between E(r) and β.
- Then, average returns across stocks must vary only on their β.
- ► Testing approach: R
 _i = λ₀ + λ_iβ̂_i + ν_i where CAPM says: λ₀ = r_f, λ₁ = R
 _m - r_f > 0
- Implementation: a two-stage procedure.
 - Assume β_i is constant over the sample
 - Step 1: Market model estimation for $\hat{\beta}_i$ using

$$R_{it} - r_f = \alpha_i + \beta_i (ER_m - r_f) + \epsilon_{it}$$

Step 2: Cross-sectional model estimation using sample average returns ∀i = 1...N in:

$$\bar{R}_i = \lambda_0 + \lambda_1 \hat{\beta}_i + \nu_i$$

where \bar{R}_i is the sample average.

• Only the β_i should influence \bar{R}_i .

Problems in the estimations

Single stock returns are very volatile.

 \implies Very difficult to differentiate cross-sectional variation in stock returns.

- Market model β is estimated with error.
- Normality assumption need not hold for *ϵ_{it}*, *ν_i*.
 Example, skew in *ν_i* can appear as linking residual risk and return.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Solutions to statistical problems

- Step 1 (β estimation): based on groups / portfolios of stocks, not single stocks.
 Reasoning: portfolio returns are more stable.
- Examples:
 - Black, Jensen, Scholes (1972) group stocks into 10 portfolios based on β_i. Top portfolio has the highest *beta* stocks, bottom portfolio has lowest β stocks.
 - Cochrane (2001) group stocks into 10 portfolios based on size (measured by market capitalisation).
- Step 2 (cross-sectional): sample average returns regressed against the portfolio betas.
- Cochrane (2001) finds that the estimated β does capture average returns, but not completely.

Cochrane 2001: testing CAPM

Size-Sorted Value-Weighted Decile Portfolio (NYSE – from 1947)

Fama Macbeth (1973)

- Two 'innovations'
 - 1. Include additional cross-sectional variables.
 - 2. Estimate 'rolling window' cross-sectional regressions across each month.

$$\mathbf{R}_{it} = \alpha_t + \beta_i \gamma_t + \delta_t \mathbf{Z}_i + \epsilon_{it}$$

- Generates a T \times 1 vector of α, γ, δ .
- If CAPM holds, then $\alpha_t = \delta_t = 0$; $\gamma_t > 0$.
- Test statistic: If returns are iid(N), then

$$t(\bar{\dot{\gamma}}_i) = rac{\bar{\dot{\gamma}}}{rac{s(\hat{\gamma}_i)}{\sqrt{T}}}$$

which is t-distributed.

► s(ŷ_i) is standard deviation, and T is the number of observations.

Testing CAPM, Fama Macbeth (1973, 1974)

- Fama Macbeth (1973): 100 portfolios across 2000 stocks.
- Fama Macbeth (1974),
 - Monthly returns for the cross-sectional regressions.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Period: 1935 to 1968

$$\bullet \ \bar{R}^{\rho}_{it} = \lambda_0 + \lambda_1 \beta_i + \lambda_2 \beta_i^2 + \lambda_3 \sigma_{\epsilon_i^2} + \nu_i$$

$$H_0: \lambda_1 > 0, \lambda_2, \lambda_3 = 0$$

Conclude that CAPM holds.

Testing multi-factor models

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Fama-French 3-factor model (1993)

- 25 portfolios grouped on additional factors to explain monthly stock excess returns:
 - Size: Small, Medium, Big (SMB)
 SMB_t = difference between return on small and big stock portfolio.
 - Value: High, Medium, Low (HML) SML_t = return on high (Book to market value) stocks versus low (Book to market value) stocks. Picks on distressed stocks.

(日) (日) (日) (日) (日) (日) (日)

- New 2-step estimation:
 - Step1: $R_{it} = \beta_{1i}R_{mt} + \beta_{2i}SMB_t + \beta_{3i}HML_t$
 - Step 2: $\bar{R}_i = \lambda_m \beta_{1i} + \lambda_{smb} \beta_{2i} + \lambda_{hml} \beta_{3i}$

Period: 1963 to 1991.

Results of Fama-French 3-factor model (1993)

- 25 portfolios sorted by (1) size, (2) book to market and (3) book to market and size.
 - Market β clustered between 0.8 and 1.5
 - Average monthly returns between 0.25 and 1.

CAPM hypothesis: positive correlation.

► For (2), CAPM is rejected.

 \rightarrow arbitrage opportunity in buying low book to market value stocks and selling high book to market value stocks.

(日) (日) (日) (日) (日) (日) (日)

- If R² of the cross-section estimation is 1, → the 3-factors perfectly capture the portfolio average returns.
- The range of R² is 0.83 0.97

Interpreting the multi-factor models

- Section 8.3, Cuthbertson-Nietsche.
- Each of the additional factors is interpreted as an alternative risk factor.
- Holds across countries: Size, value (distress), momentum
- Additional risk factors: macro-economic variables like inflation, labour income, investment growth.

These work – significant coefficients in the cross-sectional regression.

Not so well in the spread of returns on β as does size and value.

 Lettau Ludvigson (2001) also identified being in a recession as important.

Research on factor models in India

- Four factor model in Indian equities market, Sobhesh K. Agarwalla, Joshy Jacob and Jayanth R. Varma, IIM Ahmedabad working paper, W.P. No. 2013-09-05, September 2013
- Updated estimated monthly factors at http://www.iimahd.ernet.in/~iffm/ Indian-Fama-French-Momentum/
- Additional factor is 'momentum': difference in returns from the previous month's return.

(日) (日) (日) (日) (日) (日) (日)

Thank you.