Models of asset dynamics

Susan Thomas

10 November, 2017

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Goals

- The binomial lattice model
- The binomial model in pricing options
- Calibrating the binomial model with real world data

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

A context beyond option pricing

- Factor based pricing models fared poorly at explaining price dyanamics of multi-period investments.
- Focus shifted to using mathematical models to explain price fluctuations realistically.
- These had no investment principles.
- Two such models: binomial lattice models and Ito processes.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Binomial lattice pricing models

Single-period binomial pricing theory

Principles used in binomial lattice models:

- The economy has a risk–free rate, to either borrow or lend. This is r.
- The initial price of a certain stock is S₀. At any given point, the price can go up or down.
- ► Drilling down to a small interval of time Δt from t = 0, the stock price can either:

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- 1. go up to uS with probability p or
- 2. down to dS with probability (1 p)
- We assume that u > d > 0, u > 1 and d < 1.

A numerical example

- ► *S*₀ = 100
- u = (1 + 1.5/100) = 1.015
- ▶ d = (1 1.5/100) = 0.985

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- ► *Su* = 101.5
- ▶ *Sd* = 98.5

Pricing the security under risk-neutrality

The above security has two possible payoffs in the second time period: Su and Sd.
What is the price of this asset at t = 0?

_____.

- The expected payoff to this security is pSu + (1 p)Sd = B.
- With risk neutrality of preferences, an investor will be indifferent to these two assets: ie, the volatility of the asset doesn't matter to her, just the expected return.
- Then, the expected price of the second asset at t = 0 will be the present discounted value (for a one period case).

$$E(S_0) = E(B_0) = \frac{B}{(1+r)} = \frac{pSu + (1-p)Sd}{(1+r)}$$

Since *B* is a payoff with no risk, *r* is the risk-free rate of return.

A numerical example

- Payoff for the security is 101.5 with probability of 30%, or 98.5 with probability 70%.
- Then,

$$E(S_0) = \frac{(0.3 * 101.5 + 0.7 * 98.5)}{(1+r)} = \frac{99.4}{(1+r)}$$

If r = 6% annualised, what is E(S₀) if the payoff comes after a day?

$$E(S_0) = \frac{99.4}{(1.06)^{(1/365)}} = 99.42$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Price movements over multiple periods

- This can be extended for periods beyond just one. The assumption we retain is that every move up is u and a move down is d.
- For example, at the end of t = 2, S₂ can have become any of u²S, d²S, udS.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Numerical example over multiple periods

In our earlier example, the numbers at the nodes of the binomial lattice would work out to be:

 $S_{2u} = Su^2 = 103.02, S_{2d} = Sd^2 = 97.02, Sud = 99.98$

- ▶ We also assume that *p* is the probability of a move up. Then $S_2 = 103.02$ with probability p^2 , 99.98 with $(1 - p)^2$ and 97.02 with probability p(1 - p).
- Extend this over T periods and the distribution of S_T can be a normal distribution.

HW: A Monte Carlo simulation

- A Monte Carlo simulation assumes that we know the DGP.
- For a given stock with $S_0 = 100$, u = d = .015 bps over $\Delta t = 0.5$ hours.

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

- ▶ p_u = 30%.
- A trading day is 5.5 hours.
- What is the distribution of S_t at
 - 1. t = 1 day?
 - **2**. *t* = 3 months?
 - **3**. *t* = 1 year?

For each *t*, draw the PDF of S_t .

For each *t*, calculate μ_{S_t} and σ_{S_t} .

Calibrating binomial models to a real price

- ▶ In the earlier example, we assumed *u*, *d*, *p* values.
- Can we find values for u, d, p such that the expected returns using the binomial model matches the real/observed process?
- Point to note: the same values of u, d, p have to be used consistently for the whole model.
- A possible solution: if μ is the expected annual growth rate of a stock price, and σ is its standard deviation, then choose:

$$E \log \frac{S_1}{S_0} = \mu \Delta t = p \log u + (1-p) \log d$$

$$var \log \frac{S_1}{S_0} = \sigma^2 \Delta t = p(1-p)(\log u - \log d)^2$$

(ロ) (同) (三) (三) (三) (○) (○)

Solving for the above system

- Three unknowns, two values: set log u = log d which then becomes two unknowns in two equations.
- The solution for the above becomes:

$$p = \frac{1}{2} + \frac{1}{2} \left(\frac{\mu}{\sigma}\right) \sqrt{\Delta t}$$
$$u = e^{\sigma \sqrt{\Delta t}}$$
$$d = e^{-\sigma \sqrt{\Delta t}}$$

When these (u, d, p) values are used in a small time period ∆t, the binomial model can be used to replicate the annual expected value of the stock price and it's variance.

A numerical example

▶
$$\nu = 15\%, \sigma = 30\%, S = 100$$

•
$$u = e^{0.3/\sqrt{(365)}} = 1.01583$$

•
$$p = \frac{1}{2} \left(1 + \frac{0.15}{0.30} \sqrt{\frac{1}{52}} \right)$$

• And $Su^2 = 103.19$, Sud = 100.00, $Sd^2 = 96.91$, etc.

Ito processes to build price mode

Building Ito processes

- Ito processes are used to build models to explain price dynamics.
- The building block for an Ito process is a Weiner process.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The Weiner process

- The Weiner process is a basic building block for constructing models in continuous time.
- ► It is random in *continuous* time. It doesn't become deterministic even when $\Delta t \rightarrow 0$.

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Weiner processes: starting at discrete time

Consider:

$$W_{t+1} = W_t + e_{t+1} \tag{1}$$

$$W_0 = a \text{ constant}$$
 (2)

$$e_{t+1} \sim N(0,1)$$
 (3)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

 W_t is the cumulant of e_t ; it is a random walk. Properties:

- Every change is random,
- Every change is remembered forever.
- Uncertainty about $W_{t+k}|W_t, k > 1$ explodes as k rises.

Shrink the time interval?

- So far, time is discrete but only vaguely specified.
- We would like to have a version of this process which works at higher frequency while preserving the overall features.
- Let the time-interval be of length $\Delta = 1/n$ for some integer n > 1. Consider:

$$W_{t+\Delta} = W_t + e_{t+\Delta}, \quad e \sim N(0, \Delta)$$
 (4)

- In 1 unit of time, there are *n* draws of e_{t+∆} with variance n∆ which is 1.
- E(e) = 0 so the drift is zero in both cases.
- So the process ?? has the same drift and variance of process ??, while having *n* random draws per unit time.

Move to continuous time

• Now let $\Delta \rightarrow dt$:

$$\begin{array}{lll} \mathcal{W}_{t+dt} &=& \mathcal{W}_t + e_{t+dt} & (5) \\ e_{t+dt} &\sim & \mathcal{N}(0,dt) & (6) \end{array}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

dt is the smallest real number s.t. $dt^{\alpha} = 0$, $\forall \alpha > 1$.

Define

$$dW(t) = W_{t+dt} - W_t$$

- e_{t+dt} or dW(t) is called *white noise*.
- We can think $dW \sim N(0, dt)$.

Properties of dW_t

$$E(dW(t)) = 0 \tag{7}$$

$$E(dW(t)dt) = 0 \tag{8}$$

$$E(dW(t)^2) = dt (9)$$

$$Var(dW(t)^2) = 0$$
 (10)

$$E((dW(t)dt)^2) = 0$$
 (11)

$$Var(dW(t)dt) = 0$$
 (12)

(ロ) (同) (三) (三) (三) (○) (○)

What's remarkable here is :

- ► E(dW(t)²) = dt and Var(dW(t)²) = 0, so dW(t)² = dt
- ► E(dW(t)dt) = 0 and Var(dW(t)dt) = 0, so dW(t)dt = 0.

The standard Weiner process

$$W(t) = W_0 + \int_0^t dW(t) dt$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Properties of the Weiner process

- W(t) is continuous in t. (Since dW(t) is infinitesimal.)
- 2. W(t) is nowhere differentiable. (The left and right differentials are independent r.v. and unequal.)
- W(t) is a process of unbounded variation. (The length of the continuous random walk is infinite.)
- 4. *W*(*t*) is a process of bounded quadratic variation. (The sum of squared changes is *t*, is finite.)
- 5. W(u)|W(t), for u > t, is N(W(t), u t). (W(u) is a few normal innovations on top of W(t). Therefore W(u) is normal. They are mean zero and variance u - t.)
- 6. The variance of a forecast $\hat{W}(u)$ increases indefinitely when $u \to \infty$.

(The variance of expanding sum of i.i.d. normals is explosive.)

Price models using the Weiner process as a building block

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Model of price process 1: Arithmetic Brownian Motion

 $dX = \alpha dt + \sigma dW$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Superposes a linear trend with a scaled Weiner process.

Model of price process 1: Arithmetic Brownian Motion

$$dX = \alpha dt + \sigma dW$$

Superposes a linear trend with a scaled Weiner process.

- Discrete version : $\Delta X = \alpha \Delta t + \sigma \sqrt{\Delta t} \epsilon$ where $\epsilon \sim N(0, 1)$.
- X grows at a linear rate, exhibits increasing uncertainty.
- X could be positive or negative.
- ► ∀*u* > *t*

$$X_u | X_t \sim N(X_t + \alpha(u - t), \sigma^2(u - t))$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

- Forecast variance explodes as $u \to \infty$.
- Not a good model for financial prices.
- Vocabulary: "drift" α and "diffusion" σ .

Example: net cash flow.

Model of price process 2: Geometric Brownian Motion

$$dX = \alpha X dt + \sigma X dW$$

i.e.,
$$\frac{dX}{X} = \alpha dt + \sigma dW$$

Discrete version:

$$\Delta X = \alpha X \Delta t + \sigma X \sqrt{\Delta t} \epsilon$$

where $\epsilon \sim N(0, 1)$. That is,

$$\frac{\Delta X}{X} \sim N(\alpha \Delta t, \sigma^2 \Delta t)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Properties

- Grows exponentially at the rate α.
- Volatility proportional to X.
- Increasing forecast uncertainty.
- If $X_0 > 0$, all $X_t > 0$.
- If $X_t = 0$ then all X after it are 0.
- $X_u | X_t$ is lognormal, and

$$\log X_u \sim N\left(\log X_t + \alpha(u-t) - \frac{\sigma^2}{2}(u-t), \sigma^2(u-t)\right)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Example

- A stock has annual volatility 30%/year, and expected return is 15%/year. I.e., α = 0.15 and σ = 0.30.
- The process is: dS = 0.15Sdt + 0.30SdW.
- The discrete time approximation is: $\Delta S = 0.15 S \Delta t + 0.30 S \epsilon \sqrt{\Delta t}$ where $\epsilon \sim N(0, 1)$.
- Example: A week is 0.0192 years. Then the PDF for a one–week change in price when S = 100 is:

$$\Delta S = 100(0.00288 + 0.0416\epsilon) \\ = 0.288 + 4.16\epsilon$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Simulation strategy

The discrete version of

$$\frac{dS}{S} = \alpha dt + \sigma dW$$

is

$$S_{k+1} - S_k = \alpha S_k \Delta t + \sigma S_k \epsilon \sqrt{\Delta t}$$

where $\epsilon \sim N(0, 1)$. Recall that $\lim_{\Delta t \to 0} \epsilon \sqrt{\Delta t} = dW$. This gives the recursive rule:

$$S_{k+1} = (1 + \alpha \Delta t + \sigma \epsilon \sqrt{\Delta t})S_k$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

for each step which walks forward by Δt .

Model 3 : Mean reverting process

$$dX = \kappa(\mu - X)dt + \sigma X^{\gamma} dW$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

When $\gamma = 1$, this is called the Ornstein-Uhlenbeck or O-U process. The parameters are:

- $\kappa > 0$ is the speed of adjustment parameter.
- μ is the long-run mean.
- σ is the volatility.

Properties of Mean reverting processes

- If X starts positive, it stays positive.
- When X → 0, the drift is positive (it's getting pushed to µ, and volatility vanishes.
- Forecast variances are finite!
- ► For one case, $\gamma = \frac{1}{2}$, $X_u | X_t$ is non-central χ^2 . The mean is:

$$(X_t - \mu) \exp(-\kappa(u - t)) + \mu$$

The variance is

$$\frac{X_t\sigma^2}{\kappa}\exp(-\kappa(u-t)-\exp(-2\kappa(u-t)))+\frac{\mu\sigma^2}{2\kappa}(1-\exp(-\kappa(u-t)))^2$$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ○ Q @

All three are Ito Processes

$$dX = \alpha(X, t)dt + \sigma(X, t)dW$$

Ito processes allows general forms of variation and nonlinearity in the functions $\alpha(X, t)$ and $\sigma(X, t)$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Returning to Ito processes

Ito processes are nonlinear cumulations of Weiner processes.

$$dX = \alpha(X, t)dt + \sigma(X, t)dW$$

Ie, an Ito process can have general forms of variation and nonlinearity in the functions $\alpha(X, t)$ and $\sigma(X, t)$.

dW is normal but X does not have to be - it depends on α() and σ(). Example: in the case

$$dX = \alpha X dt + \sigma X dW$$

we know X is lognormal and not normal.

An analogy: ARCH models are cumulated normal innovations, but X_t is non-normal.

Our objective

- If X is an Ito process, we'd like to make statements about Y = F(X, t).
- In general, given a transformation of random variables, making a statement about the transformed random variable is difficult.
- ► The key insight used here is that *dW* is a small change over a small time *dt*.

Then it is safe to use the linear approximation to F(X, t) in a linear manner.

(ロ) (同) (三) (三) (三) (○) (○)

Normality is preserved across linear transforms.

Transformations of Ito processes

For well behaved F(X, t), Y is also an Ito process.

$$dY = \beta(X, t)dt + \nu(X, t)dW$$

"Deterministic transforms of Ito processes are Ito processes".

- ▶ The same *dW* drives both *X* and *Y*.
- Ito's lemma gives us formulas for β(X, t) and ν(X, t) in terms of F(), α(), σ().

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Thank you