Models of asset dynamics

Susan Thomas

10 November, 2017

Goals

- The binomial lattice model
- The binomial model in pricing options
- Calibrating the binomial model with real world data

A context beyond option pricing

- Factor based pricing models fared poorly at explaining price dyanamics of multi-period investments.
- Focus shifted to using mathematical models to explain price fluctuations realistically.
- These had no investment principles.
- Two such models: binomial lattice models and lto processes.

Binomial lattice pricing models

Single-period binomial pricing theory

Principles used in binomial lattice models:

- The economy has a risk-free rate, to either borrow or lend. This is r.
- The intial price of a certain stock is S_{0}. At any given point, the price can go up or down.
- Drilling down to a small interval of time Δt from $t=0$, the stock price can either:

1. go up to $u S$ with probability p or
2. down to $d S$ with probability $(1-p)$

- We assume that $u>d>0, u>1$ and $d<1$.

A numerical example

- $S_{0}=100$
- $u=(1+1.5 / 100)=1.015$
- $d=(1-1.5 / 100)=0.985$
- $S u=101.5$
- $S d=98.5$

Pricing the security under risk-neutrality

- The above security has two possible payoffs in the second time period: Su and Sd.
What is the price of this asset at $t=0$?
- The expected payoff to this security is $p S u+(1-p) S d=B$.
- With risk neutrality of preferences, an investor will be indifferent to these two assets: ie, the volatility of the asset doesn't matter to her, just the expected return.
- Then, the expected price of the second asset at $t=0$ will be the present discounted value (for a one period case).

$$
E\left(S_{0}\right)=E\left(B_{0}\right)=\frac{B}{(1+r)}=\frac{p S u+(1-p) S d}{(1+r)}
$$

- Since B is a payoff with no risk, r is the risk-free rate of return.

A numerical example

- Payoff for the security is 101.5 with probability of 30%, or 98.5 with probability 70\%.
- Then,

$$
E\left(S_{0}\right)=\frac{(0.3 * 101.5+0.7 * 98.5)}{(1+r)}=\frac{99.4}{(1+r)}
$$

- If $r=6 \%$ annualised, what is $E\left(S_{0}\right)$ if the payoff comes after a day?

$$
E\left(S_{0}\right)=\frac{99.4}{(1.06)^{(1 / 365)}}=99.42
$$

Price movements over multiple periods

- This can be extended for periods beyond just one. The assumption we retain is that every move up is u and a move down is d.
- For example, at the end of $t=2, S_{2}$ can have become any of $u^{2} S, d^{2} S, u d S$.

Numerical example over multiple periods

- In our earlier example, the numbers at the nodes of the binomial lattice would work out to be:

$$
S_{2 u}=S u^{2}=103.02, S_{2 d}=S d^{2}=97.02, S u d=99.98
$$

- We also assume that p is the probability of a move up.

Then $S_{2}=103.02$ with probalility $p^{2}, 99.98$ with $(1-p)^{2}$ and 97.02 with probability $p(1-p)$.

- Extend this over T periods and the distribution of S_{T} can be a normal distribution.

HW: A Monte Carlo simulation

- A Monte Carlo simulation assumes that we know the DGP.
- For a given stock with $S_{0}=100, u=d=.015 \mathrm{bps}$ over $\Delta t=0.5$ hours.
- $p_{u}=30 \%$.
- A trading day is 5.5 hours.
- What is the distribution of S_{t} at

1. $t=1$ day?
2. $t=3$ months?
3. $t=1$ year?

For each t, draw the PDF of S_{t}.
For each t, calculate $\mu_{S_{t}}$ and $\sigma_{S_{t}}$.

Calibrating binomial models to a real price

- In the earlier example, we assumed u, d, p values.
- Can we find values for u, d, p such that the expected returns using the binomial model matches the real/observed process?
- Point to note: the same values of u, d, p have to be used consistently for the whole model.
- A possible solution: if μ is the expected annual growth rate of a stock price, and σ is its standard deviation, then choose:

$$
\begin{aligned}
E \log \frac{S_{1}}{S_{0}}=\mu \Delta t & =p \log u+(1-p) \log d \\
\operatorname{var} \log \frac{S_{1}}{S_{0}}=\sigma^{2} \Delta t & =p(1-p)(\log u-\log d)^{2}
\end{aligned}
$$

Solving for the above system

- Three unknowns, two values: set $\log u=-\log d$ which then becomes two unknowns in two equations.
- The solution for the above becomes:

$$
\begin{aligned}
p & =\frac{1}{2}+\frac{1}{2}\left(\frac{\mu}{\sigma}\right) \sqrt{\Delta t} \\
u & =e^{\sigma \sqrt{\Delta t}} \\
d & =e^{-\sigma \sqrt{\Delta t}}
\end{aligned}
$$

- When these (u, d, p) values are used in a small time period Δt, the binomial model can be used to replicate the annual expected value of the stock price and it's variance.

A numerical example

- $\nu=15 \%, \sigma=30 \%, S=100$
- $u=e^{0.3 / \sqrt{(365)}}=1.01583$
- $d=1 / u=0.98442$
- $p=\frac{1}{2}\left(1+\frac{0.15}{0.30} \sqrt{\frac{1}{52}}\right)$
- Then, $S u=101.58, S d=98.44$
- And $S u^{2}=103.19, S u d=100.00, S d^{2}=96.91$, etc.

Ito processes to build price mode

Building Ito processes

- Ito processes are used to build models to explain price dynamics.
- The building block for an Ito process is a Weiner process.

The Weiner process

- The Weiner process is a basic building block for constructing models in continuous time.
- It is random in continuous time. It doesn't become deterministic even when $\Delta t \rightarrow 0$.

Weiner processes: starting at discrete time

Consider:

$$
\begin{align*}
W_{t+1} & =W_{t}+e_{t+1} \tag{1}\\
W_{0} & =\text { a constant } \tag{2}\\
e_{t+1} & \sim N(0,1) \tag{3}
\end{align*}
$$

W_{t} is the cumulant of e_{t}; it is a random walk. Properties:

- Every change is random,
- Every change is remembered forever.
- Uncertainty about $W_{t+k} \mid W_{t}, k>1$ explodes as k rises.

Shrink the time interval?

- So far, time is discrete but only vaguely specified.
- We would like to have a version of this process which works at higher frequency while preserving the overall features.
- Let the time-interval be of length $\Delta=1 / n$ for some integer $n>1$. Consider:

$$
\begin{equation*}
W_{t+\Delta}=W_{t}+e_{t+\Delta}, \quad e \sim N(0, \Delta) \tag{4}
\end{equation*}
$$

- In 1 unit of time, there are n draws of $e_{t+\Delta}$ with variance $n \Delta$ which is 1 .
- $E(e)=0$ so the drift is zero in both cases.
- So the process ?? has the same drift and variance of process ??, while having n random draws per unit time.

Move to continuous time

- Now let $\Delta \rightarrow d t$:

$$
\begin{align*}
W_{t+d t} & =W_{t}+e_{t+d t} \tag{5}\\
e_{t+d t} & \sim N(0, d t) \tag{6}
\end{align*}
$$

$d t$ is the smallest real number s.t. $d t^{\alpha}=0, \quad \forall \alpha>1$.

- Define

$$
d W(t)=W_{t+d t}-W_{t}
$$

- $e_{t+d t}$ or $d W(t)$ is called white noise.
- We can think $d W \sim N(0, d t)$.

Properties of $d W_{t}$

$$
\begin{align*}
E(d W(t)) & =0 \tag{7}\\
E(d W(t) d t) & =0 \tag{8}\\
E\left(d W(t)^{2}\right) & =d t \tag{9}\\
\operatorname{Var}\left(d W(t)^{2}\right) & =0 \tag{10}\\
E\left((d W(t) d t)^{2}\right) & =0 \tag{11}\\
\operatorname{Var}(d W(t) d t) & =0 \tag{12}
\end{align*}
$$

What's remarkable here is :

- $E\left(d W(t)^{2}\right)=d t$ and $\operatorname{Var}\left(d W(t)^{2}\right)=0$, so $d W(t)^{2}=d t$
- $E(d W(t) d t)=0$ and $\operatorname{Var}(d W(t) d t)=0$, so $d W(t) d t=0$.

The standard Weiner process

$$
W(t)=W_{0}+\int_{0}^{t} d W(t) d t
$$

Properties of the Weiner process

1. $W(t)$ is continuous in t.
(Since $d W(t)$ is infinitesimal.)
2. $W(t)$ is nowhere differentiable.
(The left and right differentials are independent r.v. and unequal.)
3. $W(t)$ is a process of unbounded variation.
(The length of the continuous random walk is infinite.)
4. $W(t)$ is a process of bounded quadratic variation.
(The sum of squared changes is t, is finite.)
5. $W(u) \mid W(t)$, for $u>t$, is $N(W(t), u-t)$.
$(W(u)$ is a few normal innovations on top of $W(t)$. Therefore $W(u)$ is normal. They are mean zero and variance $u-t$.)
6. The variance of a forecast $\hat{W}(u)$ increases indefinitely when $u \rightarrow \infty$.
(The variance of expanding sum of i.i.d. normals is explosive.)

Price models using the Weiner process as a building block

Model of price process 1: Arithmetic Brownian Motion

$$
d X=\alpha d t+\sigma d W
$$

- Superposes a linear trend with a scaled Weiner process.

Model of price process 1: Arithmetic Brownian Motion

$$
d X=\alpha d t+\sigma d W
$$

- Superposes a linear trend with a scaled Weiner process.
- Discrete version : $\Delta X=\alpha \Delta t+\sigma \sqrt{\Delta t} \epsilon$ where $\epsilon \sim N(0,1)$.
- X grows at a linear rate, exhibits increasing uncertainty.
- X could be positive or negative.
- $\forall u>t$

$$
X_{u} \mid X_{t} \sim N\left(X_{t}+\alpha(u-t), \sigma^{2}(u-t)\right)
$$

- Forecast variance explodes as $u \rightarrow \infty$.
- Not a good model for financial prices.
- Vocabulary: "drift" α and "diffusion" σ.

Example: net cash flow.

Model of price process 2: Geometric Brownian Motion

$$
\begin{aligned}
d X & =\alpha X d t+\sigma X d W \\
\text { i.e., } \frac{d X}{X} & =\alpha d t+\sigma d W
\end{aligned}
$$

- Discrete version:

$$
\Delta X=\alpha X \Delta t+\sigma X \sqrt{\Delta t} \epsilon
$$

where $\epsilon \sim N(0,1)$. That is,

$$
\frac{\Delta X}{X} \sim N\left(\alpha \Delta t, \sigma^{2} \Delta t\right)
$$

Properties

- Grows exponentially at the rate α.
- Volatility proportional to X.
- Increasing forecast uncertainty.
- If $X_{0}>0$, all $X_{t}>0$.
- If $X_{t}=0$ then all X after it are 0 .
- $X_{u} \mid X_{t}$ is lognormal, and

$$
\log X_{u} \sim N\left(\log X_{t}+\alpha(u-t)-\frac{\sigma^{2}}{2}(u-t), \sigma^{2}(u-t)\right)
$$

Example

- A stock has annual volatility 30\%/year, and expected return is $15 \% /$ year. I.e., $\alpha=0.15$ and $\sigma=0.30$.
- The process is: $d S=0.15 S d t+0.30 S d W$.
- The discrete time approximation is: $\Delta S=0.15 S \Delta t+0.30 S \epsilon \sqrt{\Delta t}$ where $\epsilon \sim N(0,1)$.
- Example: A week is 0.0192 years. Then the PDF for a one-week change in price when $S=100$ is:

$$
\begin{aligned}
\Delta S & =100(0.00288+0.0416 \epsilon) \\
& =0.288+4.16 \epsilon
\end{aligned}
$$

Simulation strategy

The discrete version of

$$
\frac{d S}{S}=\alpha d t+\sigma d W
$$

is

$$
S_{k+1}-S_{k}=\alpha S_{k} \Delta t+\sigma S_{k} \epsilon \sqrt{\Delta t}
$$

where $\epsilon \sim N(0,1)$. Recall that $\lim _{\Delta t \rightarrow 0} \epsilon \sqrt{\Delta t}=d W$. This gives the recursive rule:

$$
S_{k+1}=(1+\alpha \Delta t+\sigma \epsilon \sqrt{\Delta t}) S_{k}
$$

for each step which walks forward by Δt.

Model 3 : Mean reverting process

$$
d X=\kappa(\mu-X) d t+\sigma X^{\gamma} d W
$$

When $\gamma=1$, this is called the Ornstein-Uhlenbeck or O-U process. The parameters are:

- $\kappa>0$ is the speed of adjustment parameter.
- μ is the long-run mean.
- σ is the volatility.

Properties of Mean reverting processes

- If X starts positive, it stays positive.
- When $X \rightarrow 0$, the drift is positive (it's getting pushed to μ, and volatility vanishes.
- Forecast variances are finite!
- For one case, $\gamma=\frac{1}{2}, X_{u} \mid X_{t}$ is non-central χ^{2}.

The mean is:

$$
\left(X_{t}-\mu\right) \exp (-\kappa(u-t))+\mu
$$

The variance is

$$
\frac{X_{t} \sigma^{2}}{\kappa} \exp (-\kappa(u-t)-\exp (-2 \kappa(u-t)))+\frac{\mu \sigma^{2}}{2 \kappa}(1-\exp (-\kappa(u-t)))^{2}
$$

All three are Ito Processes

$$
d X=\alpha(X, t) d t+\sigma(X, t) d W
$$

Ito processes allows general forms of variation and nonlinearity in the functions $\alpha(X, t)$ and $\sigma(X, t)$.

Returning to Ito processes

- Ito processes are nonlinear cumulations of Weiner processes.

$$
d X=\alpha(X, t) d t+\sigma(X, t) d W
$$

le, an Ito process can have general forms of variation and nonlinearity in the functions $\alpha(X, t)$ and $\sigma(X, t)$.

- $d W$ is normal but X does not have to be - it depends on $\alpha()$ and $\sigma()$. Example: in the case

$$
d X=\alpha X d t+\sigma X d W
$$

we know X is lognormal and not normal.

- An analogy: ARCH models are cumulated normal innovations, but X_{t} is non-normal.

Our objective

- If X is an Ito process, we'd like to make statements about $Y=F(X, t)$.
- In general, given a transformation of random variables, making a statement about the transformed random variable is difficult.
- The key insight used here is that $d W$ is a small change over a small time dt.
Then it is safe to use the linear approximation to $F(X, t)$ in a linear manner.
- Normality is preserved across linear transforms.

Transformations of Ito processes

- For well behaved $F(X, t), Y$ is also an Ito process.

$$
d Y=\beta(X, t) d t+\nu(X, t) d W
$$

"Deterministic transforms of Ito processes are Ito processes".

- The same $d W$ drives both X and Y.
- Ito's lemma gives us formulas for $\beta(X, t)$ and $\nu(X, t)$ in terms of $F(), \alpha(), \sigma()$.

Thank you

