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Goals

I The binomial lattice model
I The binomial model in pricing options
I Calibrating the binomial model with real world data



A context beyond option pricing

I Factor based pricing models fared poorly at explaining price
dyanamics of multi-period investments.

I Focus shifted to using mathematical models to explain price
fluctuations realistically.

I These had no investment principles.

I Two such models: binomial lattice models and Ito processes.



Binomial lattice pricing models



Single–period binomial pricing theory

Principles used in binomial lattice models:

I The economy has a risk–free rate, to either borrow or lend. This
is r .

I The intial price of a certain stock is S0.
At any given point, the price can go up or down.

I Drilling down to a small interval of time ∆t from t = 0, the stock
price can either:

1. go up to uS with probability p or
2. down to dS with probability (1− p)

I We assume that u > d > 0, u > 1 and d < 1.



A numerical example

I S0 = 100

I u = (1 + 1.5/100) = 1.015

I d = (1− 1.5/100) = 0.985

I Su = 101.5

I Sd = 98.5



Pricing the security under risk–neutrality

I The above security has two possible payoffs in the second time
period: Su and Sd .
What is the price of this asset at t = 0?

I The expected payoff to this security is pSu + (1− p)Sd = B.

I With risk neutrality of preferences, an investor will be indifferent
to these two assets: ie, the volatility of the asset doesn’t matter
to her, just the expected return.

I Then, the expected price of the second asset at t = 0 will be the
present discounted value (for a one period case).

E(S0) = E(B0) =
B

(1 + r)
=

pSu + (1− p)Sd
(1 + r)

I Since B is a payoff with no risk, r is the risk-free rate of return.



A numerical example

I Payoff for the security is 101.5 with probability of 30%, or 98.5
with probability 70%.

I Then,

E(S0) =
(0.3 ∗ 101.5 + 0.7 ∗ 98.5)

(1 + r)
=

99.4
(1 + r)

I If r = 6% annualised, what is E(S0) if the payoff comes after a
day?

E(S0) =
99.4

(1.06)(1/365)
= 99.42



Price movements over multiple periods

I This can be extended for periods beyond just one. The
assumption we retain is that every move up is u and a move
down is d .

I For example, at the end of t = 2, S2 can have become any of
u2S,d2S,udS.
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Sd

Suu

Sud

Sdd



Numerical example over multiple periods

I In our earlier example, the numbers at the nodes of the binomial
lattice would work out to be:
S2u = Su2 = 103.02,S2d = Sd2 = 97.02,Sud = 99.98

I We also assume that p is the probability of a move up.
Then S2 = 103.02 with probalility p2, 99.98 with (1− p)2 and
97.02 with probability p(1− p).

I Extend this over T periods and the distribution of ST can be a
normal distribution.



HW: A Monte Carlo simulation

I A Monte Carlo simulation assumes that we know the DGP.

I For a given stock with S0 = 100, u = d = .015bps over ∆t = 0.5
hours.

I pu = 30%.

I A trading day is 5.5 hours.

I What is the distribution of St at

1. t = 1 day?
2. t = 3 months?
3. t = 1 year?

For each t , draw the PDF of St .
For each t , calculate µSt and σSt .



Calibrating binomial models to a real price

I In the earlier example, we assumed u,d ,p values.

I Can we find values for u,d ,p such that the expected returns
using the binomial model matches the real/observed process?

I Point to note: the same values of u,d ,p have to be used
consistently for the whole model.

I A possible solution: if µ is the expected annual growth rate of a
stock price, and σ is its standard deviation, then choose:

E log
S1

S0
= µ∆t = p log u + (1− p) log d

var log
S1

S0
= σ2∆t = p(1− p)(log u − log d)2



Solving for the above system

I Three unknowns, two values: set log u = − log d which then
becomes two unknowns in two equations.

I The solution for the above becomes:

p =
1
2

+
1
2

(µ
σ

)√
∆t

u = eσ
√

∆t

d = e−σ
√

∆t

I When these (u,d ,p) values are used in a small time period ∆t ,
the binomial model can be used to replicate the annual expected
value of the stock price and it’s variance.



A numerical example

I ν = 15%, σ = 30%,S = 100

I u = e0.3/
√

(365) = 1.01583

I d = 1/u = 0.98442

I p = 1
2

(
1 + 0.15

0.30

√
1
52

)
I Then, Su = 101.58,Sd = 98.44

I And Su2 = 103.19,Sud = 100.00,Sd2 = 96.91, etc.



Ito processes to build price mode



Building Ito processes

I Ito processes are used to build models to explain price
dynamics.

I The building block for an Ito process is a Weiner process.



The Weiner process

I The Weiner process is a basic building block for constructing
models in continuous time.

I It is random in continuous time. It doesn’t become deterministic
even when ∆t → 0.



Weiner processes: starting at discrete time

Consider:

Wt+1 = Wt + et+1 (1)
W0 = a constant (2)

et+1 ∼ N(0,1) (3)

Wt is the cumulant of et ; it is a random walk. Properties:

I Every change is random,

I Every change is remembered forever.

I Uncertainty about Wt+k |Wt , k > 1 explodes as k rises.



Shrink the time interval?

I So far, time is discrete but only vaguely specified.

I We would like to have a version of this process which works at
higher frequency while preserving the overall features.

I Let the time–interval be of length ∆ = 1/n for some integer
n > 1. Consider:

Wt+∆ = Wt + et+∆, e ∼ N(0,∆) (4)

I In 1 unit of time, there are n draws of et+∆ with variance n∆
which is 1.

I E(e) = 0 so the drift is zero in both cases.

I So the process ?? has the same drift and variance of process
??, while having n random draws per unit time.



Move to continuous time

I Now let ∆→ dt :

Wt+dt = Wt + et+dt (5)
et+dt ∼ N(0,dt) (6)

dt is the smallest real number s.t. dtα = 0, ∀α > 1.

I Define
dW (t) = Wt+dt −Wt

I et+dt or dW (t) is called white noise.

I We can think dW ∼ N(0,dt).



Properties of dWt

E(dW (t)) = 0 (7)
E(dW (t)dt) = 0 (8)
E(dW (t)2) = dt (9)

Var(dW (t)2) = 0 (10)
E((dW (t)dt)2) = 0 (11)

Var(dW (t)dt) = 0 (12)

What’s remarkable here is :

I E(dW (t)2) = dt and Var(dW (t)2) = 0, so
dW (t)2 = dt

I E(dW (t)dt) = 0 and Var(dW (t)dt) = 0, so
dW (t)dt = 0.



The standard Weiner process

W (t) = W0 +

∫ t

0
dW (t)dt



Properties of the Weiner process

1. W (t) is continuous in t .
(Since dW (t) is infinitesimal.)

2. W (t) is nowhere differentiable.
(The left and right differentials are independent r.v. and unequal.)

3. W (t) is a process of unbounded variation.
(The length of the continuous random walk is infinite.)

4. W (t) is a process of bounded quadratic variation.
(The sum of squared changes is t , is finite.)

5. W (u)|W (t), for u > t , is N(W (t),u − t).
(W (u) is a few normal innovations on top of W (t). Therefore
W (u) is normal. They are mean zero and variance u − t .)

6. The variance of a forecast Ŵ (u) increases indefinitely when
u →∞.
(The variance of expanding sum of i.i.d. normals is explosive.)



Price models using the Weiner process as a
building block



Model of price process 1: Arithmetic Brownian Motion

dX = αdt + σdW

I Superposes a linear trend with a scaled Weiner process.

I Discrete version : ∆X = α∆t + σ
√

∆tε where ε ∼ N(0,1).

I X grows at a linear rate, exhibits increasing uncertainty.

I X could be positive or negative.

I ∀u > t
Xu|Xt ∼ N(Xt + α(u − t), σ2(u − t))

I Forecast variance explodes as u →∞.

I Not a good model for financial prices.

I Vocabulary: “drift” α and “diffusion” σ.

Example: net cash flow.
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Model of price process 2: Geometric Brownian Motion

dX = αXdt + σXdW

i.e.,
dX
X

= αdt + σdW

I Discrete version:

∆X = αX∆t + σX
√

∆tε

where ε ∼ N(0,1). That is,

∆X
X
∼ N(α∆t , σ2∆t)



Properties

I Grows exponentially at the rate α.

I Volatility proportional to X .

I Increasing forecast uncertainty.

I If X0 > 0, all Xt > 0.

I If Xt = 0 then all X after it are 0.

I Xu|Xt is lognormal, and

log Xu ∼ N
(

log Xt + α(u − t)− σ2

2
(u − t), σ2(u − t)

)



Example

I A stock has annual volatility 30%/year, and expected return is
15%/year. I.e., α = 0.15 and σ = 0.30.

I The process is: dS = 0.15Sdt + 0.30SdW .

I The discrete time approximation is:
∆S = 0.15S∆t + 0.30Sε

√
∆t where ε ∼ N(0,1).

I Example: A week is 0.0192 years. Then the PDF for a
one–week change in price when S = 100 is:

∆S = 100(0.00288 + 0.0416ε)
= 0.288 + 4.16ε



Simulation strategy

The discrete version of

dS
S

= αdt + σdW

is

Sk+1 − Sk = αSk ∆t + σSkε
√

∆t

where ε ∼ N(0,1). Recall that lim∆t→0 ε
√

∆t = dW . This gives the
recursive rule:

Sk+1 = (1 + α∆t + σε
√

∆t)Sk

for each step which walks forward by ∆t .



Model 3 : Mean reverting process

dX = κ(µ− X )dt + σXγdW

When γ = 1, this is called the Ornstein-Uhlenbeck or O-U process.
The parameters are:

I κ > 0 is the speed of adjustment parameter.

I µ is the long-run mean.

I σ is the volatility.



Properties of Mean reverting processes

I If X starts positive, it stays positive.

I When X → 0, the drift is positive (it’s getting pushed to µ, and
volatility vanishes.

I Forecast variances are finite!

I For one case, γ = 1
2 , Xu|Xt is non-central χ2.

The mean is:

(Xt − µ) exp(−κ(u − t)) + µ

The variance is

Xtσ
2

κ
exp(−κ(u− t)−exp(−2κ(u− t)))+

µσ2

2κ
(1−exp(−κ(u− t)))2



All three are Ito Processes

dX = α(X , t)dt + σ(X , t)dW

Ito processes allows general forms of variation and nonlinearity
in the functions α(X , t) and σ(X , t).



Returning to Ito processes

I Ito processes are nonlinear cumulations of Weiner processes.

dX = α(X , t)dt + σ(X , t)dW

Ie, an Ito process can have general forms of variation and
nonlinearity in the functions α(X , t) and σ(X , t).

I dW is normal but X does not have to be - it depends on α() and
σ(). Example: in the case

dX = αXdt + σXdW

we know X is lognormal and not normal.

I An analogy: ARCH models are cumulated normal innovations,
but Xt is non-normal.



Our objective

I If X is an Ito process, we’d like to make statements about
Y = F (X , t).

I In general, given a transformation of random variables, making a
statement about the transformed random variable is difficult.

I The key insight used here is that dW is a small change over a
small time dt .
Then it is safe to use the linear approximation to F (X , t) in a
linear manner.

I Normality is preserved across linear transforms.



Transformations of Ito processes

I For well behaved F (X , t), Y is also an Ito process.

dY = β(X , t)dt + ν(X , t)dW

“Deterministic transforms of Ito processes are Ito processes”.

I The same dW drives both X and Y .

I Ito’s lemma gives us formulas for β(X , t) and ν(X , t) in terms of
F (), α(), σ().



Thank you


