An introduction to portfolio optimisation

Susan Thomas IGIDR, Bombay

3 May, 2011

Susan Thomas An introduction to portfolio optimisation

< 🗇 🕨

- ∢ ⊒ →

< ∃→

ъ

Goals

- What is a portfolio?
- Asset classes that define an Indian portfolio, and their markets.
- Inputs to portfolio optimisation: measuring returns and risk of a portfolio
- Optimisation framework: optimising a risky portfolio using the Markowitz framework
- Outcome 1: passive portfolio management
- Outcome 2: active portfolio management
- Evaluating portfolio performance

・ 同 ト ・ ヨ ト ・ ヨ ト …

Portfolios

Susan Thomas An introduction to portfolio optimisation

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - 釣A@

Definitions

- Asset: a contract that stores value.
- Total return, R: <u>Amount invested</u>
- Rate of return, r: <u>Amount received-Amount invested</u> Amount invested
- To get closer to normality, we focus on :

$$r_t = \log(P_t/P_{t-1})$$

- Returns on all assets are random variables.
- In a normal world, returns *r* are normally distributed with mean μ_r, variance σ_r², standard deviation σ_r.
- For a pair of normal random variables, (x, y): covariance σ_{xy} , correlation coefficient ρ_{xy} .

(個) (日) (日) (日)

A portfolio

- Investments in a set of assets together make a portfolio.
 As opposed to an investment in a single asset.
- A portfolio is defined as:
 - The value of the investment (portfolio).
 - Assets held in the portfolio.
 - Fraction of the value invested in each asset.
 These are called the weights of each asset in the portfolio, and are typically denoted as w_i for asset *i*.
- Choosing a portfolio is equivalent to choosing the weights of assets in a portfolio.
 - How are these weights chosen?
 - Would the same weights serve the "best" interests of all investors?

ヘロト 人間 ト ヘヨト ヘヨト

- Every portfolio outcome is finally measured by the amount of return it gives for a certain amount of risk taken.
- Portfolio choice follows two stages:
 - capital allocation: how much of riskless vs. risky assets to hold?
 - ecurity section:
 - What underlying assets constitute a riskless portfolio?
 - What constitutes a risky portfolio?

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Assets that are traded are securities.

Riskless Risky	Govt. bonds Corporate bonds, firm equity, commodities, foreign exchange, foreign equity, foreign gov- ernment bonds
Leverage/Risk management	Derivatives

프 (프)

< 🗇 > <

Measurement of risk and return

Susan Thomas An introduction to portfolio optimisation

Why emphasise the measurement?

- Portfolio optimisation depends upon the tradeoff between the future risk and expected return of the portfolio. The higher the future risk, the higher the expected return demanded by a risk-averse investor.
- Thus, future risk and expected return have to be modelled and forecasted as inputs into portfolio choice..
- Problem: key inputs are observed (past) returns vs. risk behaviour for the portfolio.

These pose severe challenges.

・ 同 ト ・ ヨ ト ・ ヨ ト

Challenges in measuring return and risk

- Past returns are easy to *measure* when assets are traded and prices are observed.
- **Challenge**: There is no consensus on good forecasting models for expected returns.
- **Challenge**: how to measure risk? Unlike the dynamics of prices, which we measure as returns, there is no separate instrument to *observe* risk?
- Once they are measured (typically by proxy), there appear to be reasonably good forecasting models for risk.

Simplest: percentage change in prices:

$$r_t = 100 * (P_t - P_{t-1}/P_{t-1})$$

Standard: log price difference:

$$r_t = 100 * log(P_t/P_{t-1})$$

This accounts for:

- Prices being log-normal, rather than normal.
- 2 An approximation to the actual value between purchase and sale of the asset.

伺き くほき くほう

- Volatility is σ^2 of returns.
- More often, volatility is denoted as the standard deviation of returns instead, σ.
- The dependent variable used in the modelling and forecasting exercise is σ .
- However, this is static measure of volatility.
- Real world observation: variance changes.
- We need a time series of volatility.

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

- Traditional approaches:
 - Time series of r_t^2 ,
 - 2 Moving window average σ ,
 - 3 Range of prices as a measure of σ .
- Recent approaches using new markets and improved market information:
 - Implied volatility from options markets,
 - 2 Realised volatility using high-frequency data.

個 とくき とくきと

Setup for the portfolio problem: definitions, concepts

Susan Thomas An introduction to portfolio optimisation

★ Ξ → ★ Ξ → ...

ъ

The problem of portfolio optimisation

- We are given a (competitive, liquid) market where *n* assets are traded.
- The market is *efficient* there are no easy forecasts for tomorrow's returns.
- *The problem:* Given an individual's utility function, how does she allocate her wealth among these *n* assets?
- Microeconomics teaches us that a good utility function is one that models individuals as having decreasing *marginal utility*.
- In finance, the individual is modelled as being *risk averse*: ie, any investment that has *higher expected risk*, has to give *higher expected returns*. Thus, the parameter space in financial optimisation involves *E*(*r*) and *E*(*σ*).

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Rules of the game

- *E*(*r*) is a random variable.
 For asset, *a*, expected returns at time *t* can follow any distribution, *E*(*r*_{*a*,*t*}).
- Typical choice : r_{a,t} ~ N() where N is the normal distribution with two parameters, μ, σ.
- In a normal world, returns on one asset is a random variable r needs:

$$\mu_r, \sigma_r^2$$

• For returns on two assets, (*a*, *b*), additional requirement:

 $\sigma_{\textit{ab}} \text{ or } \rho_{\textit{ab}}$

ヘロト 人間 とくほ とくほ とう

- Risk-free interest rate is r_f.
 r_f is assumed to be known upfront and fixed.
- *r_a* is the return obtained in investing in an asset.
 It is a sum of capital gains and cashflow/dividend payouts.

 r_a is a random variable when the investment is done.

伺 とくき とくき とう

- Suppose there are two assets: Asset 1: $E(r_1) = 0.12\%$, $\sigma_1 = 0.20\%$. Asset 2: $E(r_2) = 0.15\%$, $\sigma_2 = 0.18\%$. $\sigma_{1,2} = 0.01$.
- Portfolio weights = 0.25, 0.75
- What is $E(r_p), \sigma_p$?

(雪) (ヨ) (ヨ)

Example of $E(r_p), \sigma_p$ calculation

• Expected returns is a weighted average of individual returns.

$$E(r_p) = w'E(r_a)$$

= (0.25 * 0.12) + (0.75 * 0.15)
= 0.1425

• Variance of the portfolio is σ_w^2 is a little more complicated:

$$\begin{aligned} \sigma_{\rho}^2 &= w' \Sigma w \\ &= (0.25^2 * 0.20^2) + (0.75^2 * 0.18^2) + 2 * (0.25 * 0.75 * 0.01) \\ &= 0.024475 \end{aligned}$$

$$\sigma_p = \sqrt{\sigma_p^2} = 0.15644$$

Here, we also require the correlation between the two assets, $\rho_{1,2} = 0.01$.

- Suppose we add one more asset to our set of 2: Asset 1: $E(r_1) = 0.12\%$, $\sigma_1 = 0.20\%$. Asset 2: $E(r_2) = 0.15\%$, $\sigma_2 = 0.18\%$. Asset 3: $E(r_2) = 0.10\%$, $\sigma_3 = 0.15\%$. $\sigma_{1,2} = 0.01$, $\sigma_{1,3} = 0.005$, $\sigma_{2,3} = 0.008$
- Portfolio weights = 0.25, 0.25, 0.5
- What is $E(r_p), \sigma_p$?

・ 同 ト ・ ヨ ト ・ ヨ ト …

Example: $E(r_p), \sigma_p$ calculation

We calculate it using the same equations as before:

$$E(r_p) = w'E(r_a)$$

= (0.25 * 0.12) + (0.25 * 0.15) + (0.5 * 0.10)
= 0.1175

$$\begin{split} \sigma_{\rho}^2 &= w' \Sigma w \\ &= (0.25^2 * 0.20^2) + (0.25^2 * 0.18^2) + (0.5^2 * 0.15^2) + \\ &\quad 2 * (0.25 * 0.25 * 0.01) + 2 * (0.25 * 0.5 * 0.005) + \\ &\quad 2 * (0.25 * 0.5 * 0.008) \\ &= 0.015 \\ \sigma_{\rho} &= \sqrt{\sigma_{\rho}^2} = 0.12 \end{split}$$

< 回 > < 回 > < 回 > -

$E(r_p), \sigma_p$ for different \bar{w}

For an alternative portfolio, $\bar{w} = 0.25, 0.5, 0.25$ we have $E(r_p, \sigma_p)$ as:

$$E(r_p) = w'E(r_a)$$

= (0.25 * 0.12) + (0.5 * 0.15) + (0.25 * 0.10)
= 0.13

$$\begin{aligned} \sigma_{\rho}^{2} &= w' \Sigma w \\ &= (0.25^{2} * 0.20^{2}) + (0.5^{2} * 0.18^{2}) + (0.25^{2} * 0.15^{2}) + \\ &\quad 2 * (0.25 * 0.5 * 0.01) + 2 * (0.25 * 0.25 * 0.005) + \\ &\quad 2 * (0.25 * 0.5 * 0.008) \\ &= 0.017 \\ \sigma_{\rho} &= \sqrt{\sigma_{\rho}^{2}} = 0.13 \end{aligned}$$

For this portfolio, we have got both higher returns **and** higher risk.

Multivariate rather than univariate distributions We need more than an understanding of returns on a single asset: we need to understand their relationship with all the other assets in the portfolio.

Diversification The variance on the portfolio is much lower than the variance on either asset.

0.15644 < 0.200.15644 < 0.18

Issues in diversification

- Diversification is the reduction in variance of the portfolio returns.
- This is achieved by:
 - Holding a large number of assets, such that the weights on each become smaller and smaller.
 Then, the effect of asset *i* in the portfolio variance is w²_i.
 - The smaller the w_i^2 , the larger the reduction in variance.
 - Holding uncorrelated assets, ie, create a portfolio with assets (*i*, *j*) such that ρ_{i,j} is very small.
 The lower the ρ_{i,j} across the *n* assets, the higher the reduction in variance of the portfolio
- Layman's terms? "Do not place all your eggs in one basket".

ヘロト ヘ戸ト ヘヨト ヘヨト

Matrix notation in portfolio optimisation

- There are *k* assets, where each looks like it comes from a normal distribution.
- Jointly, the returns on all these *K* assets can be written as a vector:

 $\vec{r}_a \sim \text{MVN}(\mu, \Sigma)$

- μ is K × 1
- Σ is $K \times K$ and is a positive definite symmetric matrix.
- If **portfolio** invests in *n* assets with **a set of weights** *w*, the portfolio is then a linear combination of the *n* assets.
- Then, the portfolio features are calculated as:

$$r_{p} \sim N(w'\mu, w'\Sigma w)$$

ヘロン 人間 とくほ とくほ とう

- Expected return on the portfolio: $E(r_p) = \sum_{i=1}^{n} w_i E(r_i)$.
- Variance of the portfolio: $\sigma_p^2 = \sum_{i=1}^n w_i^2 \sigma_i^2 + 2 \sum_{i=1}^n \sum_{j=1}^n w_i w_j \sigma_{ij}$

・ 「 ト ・ ヨ ト ・ 日 ト …

- \vec{w} sums to one.
- Typically, we consider each w_i to fall between 0 and 1.
- In a country where **short-selling** is permitted, w_i can be less than 1, or greater than 1.
- Choosing the portfolio means choosing a vector of weights w.

Once *w* is chosen, we know the $E(r_p)$ and σ_p for the portfolio.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ……

- Every choice *w* induces two numbers $E(r_p)$ and σ_p^2 .
- A key analytic tool to choose w: E(r_a) σ_a graph.
 A graph with E(r_p) on the y-axis and σ on the x-axis.
- "For all possible portfolios containing the same assets, but in different proportion, plot the portfolio as a point on the $E(r) \sigma$ graph."
- This is a simple 2-D graph, regardless of how many assets you have!

ヘロン 人間 とくほ とくほ とう

Optimisation

- Now we are ready to understand the problem space of portfolio optimisation.
- Start with a two-asset universe:

With two assets, (A, B) where

 $(\boldsymbol{A}, \boldsymbol{B} \sim \mathrm{MVN}(\vec{\mu}, \vec{\Sigma}))$

 $\vec{\mu}$ is 2 × 1 with μ_A, μ_B . and $\vec{\Sigma}$ is 2 × 2 with $\sigma_A^2, \sigma_B^2, \rho_{AB}$.

- The investment in one asset as w.
 Then, the investment in the other is 1 w.
- Porfolio optimisation problem: for the parameters in $\vec{\mu}, \vec{\Sigma}$, find the "optimal" *w*.

くぼう くほう くほう

• CHI-FU HUANG and ROBERT H. LITZENBERGER. Foundations for financial economics. North-Holland, 1988

This builds a very good micro–economic foundation towards the Markowitz framework for portfolio optimisation.