The Markowitz framework

Susan Thomas IGIDR, Bombay

4 May, 2011

Susan Thomas The Markowitz framework

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − のへで

Goals

- What is a portfolio?
- Asset classes that define an Indian portfolio, and their markets.
- Inputs to portfolio optimisation: measuring returns and risk of a portfolio
- Optimisation framework: optimising a risky portfolio using the Markowitz framework
- Outcome 1: passive portfolio management
- Outcome 2: active portfolio management
- Evaluating portfolio performance

(雪) (ヨ) (ヨ)

Recap

- Basic tennet of financial optimisation: investors tend to be risk-averse.
 This implies: higher risk has to be compensated by higher return.
- Two parameters of financial optimisation: Expected return *E*(*r*), expected risk measured by *E*(*σ*) from the investment.
- A portfolio is characterised by *V*, the amount invested, and *w*, the fraction invested in each asset.
- Observation: Different *w* imply a unique combination of *E*(*r*) - σ.
- The choice of *w* is driven by individual preferences about risk.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

The optimisation setup

Susan Thomas The Markowitz framework

ヘロン 人間 とくほど くほとう

₹ 990

Varying *w* from 0 to 1 in a $E(r_p) - \sigma_p$ graph

(画) (ヨ) (ヨ)

э

- The previous graph shows how E(r_ρ) σ_ρ combination changes as w changes.
- There is some value of *w* for which *E*(*r_ρ*) is the maximum.
 There is some value of *w* for which *σ_p* is the minimum.
- *w* for maximum $E(r_p)$ and minimum σ_p is not the same.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

What happens if ρ changes?

sigma

ヘロン 人間 とくほど くほとう

æ

Susan Thomas The Markowitz framework

How does the $E(r_p)$, σ_p graph vary with changing values of ρ ?

- \vec{AB} is $(E(r_p), \sigma_p)$ for all *non–negative* linear combinations of A and B, when $\rho_{AB} = 1$.
- Lines \vec{PA} and \vec{PB} define the boundaries of $(E(r_p), \sigma_p)$ $\forall (-1 < \rho_{AB} < 1).$
- The curve AB defines (E(r_p), σ_p) for all non–negative linear combinations of A and B for some intermediate fixed value of ρ_{AB}.
- Lemma: Any curve in a r
 _p σ_p space, defined by a non-negative mixture of two assets lies within this triangular region defined by
 - the two $\bar{r}_i \sigma_i$ coordinates of the original assets, and

• the point
$$P = \frac{(\bar{r}_A \sigma_B + \bar{r}_B \sigma_A)}{(\sigma_A + \sigma_B)}$$

・ロン ・聞 と ・ ヨ と ・ ヨ と

Question: How does this theory work in the real world? We find out by a simulation using real data.

(雪) (ヨ) (ヨ)

э

Simulating the $E(r_p) - \sigma_p$ graph for a set of **7**-stocks

Susan Thomas The Markowitz framework

> colMeans(r)

RIL Infosys TataChem TELCO TISCO TTEA Grasim 0.31392 0.15702 0.40761 0.29796 0.44311 0.12302 0.32051

> print(cov(r), digits=3)

	RIL	Infosys	TataChem	TELCO	TISCO	TTEA	Grasim
RIL	29.08	11.01	9.2	12.85	15.93	11.27	8.13
Infosys	11.01	61.23	10.1	4.06	8.72	7.48	7.60
TataChem	9.19	10.11	33.9	15.75	14.51	13.75	12.25
TELCO	12.85	4.06	15.7	38.17	20.16	16.60	7.64
TISCO	15.93	8.72	14.5	20.16	32.94	13.95	11.79
TTEA	11.27	7.48	13.8	16.60	13.95	29.64	8.02
Grasim	8.13	7.60	12.2	7.64	11.79	8.02	34.17

・ 同 ト ・ ヨ ト ・ ヨ ト …

> print(cor(r), digits=3)

	RIL	Infosys	TataChem	TELCO	TISCO	TTEA	Grasim
RIL	1.000	0.261	0.293	0.386	0.515	0.384	0.258
Infosys	0.261	1.000	0.222	0.084	0.194	0.176	0.166
TataChem	0.293	0.222	1.000	0.438	0.434	0.434	0.360
TELCO	0.386	0.084	0.438	1.000	0.569	0.493	0.212
TISCO	0.515	0.194	0.434	0.569	1.000	0.446	0.351
TTEA	0.384	0.176	0.434	0.493	0.446	1.000	0.252
Grasim	0.258	0.166	0.360	0.212	0.351	0.252	1.000

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Example: E(r)- σ graph, N=20 portfolios

Susan Thomas The Markowitz framework

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Example: $E(r)-\sigma$ graph, N=2000 portfolios

Susan Thomas The Markowitz framework

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Observations from the simulations

- The characteristics of "random portfolios" (where the weights on the securities are randomly selected) show a convex curve for different w.
- There is a *minimum* value of *σ*_p: no matter what combination of *w*, there is no way of reaching a lower *σ*_p with this set of assets.
- There are a set of portfolios which no-one would want to hold: where E(r_p) decreases as σ_p increases.
- We need to focus on those portfolios where E(r_p) increases as σ_p increases.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ……

- Given this graph, the steps for portfolio optimisation involves:
 - Choose a desired $E(r_p)$.
 - Next choose *w* such that the variance is minimised for a selected value of *E*(*r_ρ*).
 For any given level of *E*(*r_ρ*), there is *w* such that *σ_ρ* is minimised.
- The solution to the optimal *w* conditional on a chosen *E*(*r_p*) is given by the Markowitz framework.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Harry Markowitz and the Optimal Portfolio

Susan Thomas The Markowitz framework

・ 同 ト ・ ヨ ト ・ ヨ ト …

∃ 𝒫𝔅

Harry Markowitz's Nobel Prize idea

- If there are *N* risky assets, with returns that are distributed according to a multi-variate normal distribution, we can calculate $E(r_p)$ - σ_p for every portfolio \vec{w} .
- Problem: What \vec{w} is best for any given person?
- Harry's Ph.D. thesis reduced the above question to the following statement:
 How do we maximise expected returns while simultaneously minimising risk?
- He operationalised it by asking:
 For a given level of *E*(*w*'μ), how can we find the lowest possible *w*'Σ*w*?

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

The Markowitz model

- There are n assets.
- Define a set of asset weights $w_1 \dots w_n$ such that
 - $\bigcirc \sum w_i = 1, \text{ and }$
 - **2** For a **chosen** value of $E(r_p)$, σ_p is minimum.
- Solution use Langrange multipliers to solve this optimisation exercise: to find w such that:

minimise
$$\frac{1}{2}\sum_{i,j=1}^{n} W_i W_j \sigma_{ij}$$

subject to
$$\sum_{i=1}^{n} w_i E(r_i) = E(r_p)$$

$$\sum_{i=1}^{n} w_i = 1$$

< 回 > < 回 > < 回 > -

- There are no contraints on *w_i* other than they sum to one.
- When the country imposes restrictions on short selling, you may need to impose w_i ≥ 0.

(過) (ヨ) (ヨ)

- With three or more assets, the feasible region is a 2-D area.
- The area is convex to the left ie, the rise in *E*(*r_p*) is slower than the increase in *σ_p*.
- The left boundary of the feasible set is called the "portfolio frontier" or the "minimum variance set".
- The portfolio with the lowest value of σ on the portfolio frontier is called the "minimum–variance point" (MVP).

Portfolio diagram for an *n*-asset universe

Given *n* assets and their known characteristics, the mean–variance graph of the portfolio will look like:

> < 臣 > < 臣 > <</p>

э

The role of preferences to getting a solution

- An investor who is "risk-averse" invests in the MVP portfolio.
- An investor who prefers not to invest in the MVP portfolio is said to "prefer risk".
- For all practical purposes, there will be no investment in the portfolios with expected returns below that of the MVP. These are called "*inefficient portfolios*".
 Those that lie above are called the "*efficient portfolios*".
- The set of all the efficient portfolios is called the "*efficient portfolio frontier*" (EFF).

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Suppose we have two portfolios, P₁ and P₂, that lie on the efficient frontier, which are defined with weights w
 ₁ and w
 ₂
- A convex combination of P₁ and P₂ *α*w
 w 1 + (1 − α)w
 w 2, ∀ − ∞ < α < ∞ − will also lie on the efficient frontier!

- Implication:

Once we have found **any two efficient frontier portfolios**, we can create any number of efficient portfolios using these two.

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

Implication for individual investment decisions

- An investor chooses one of two things: how much is the least returns he expects from his investment, E(r_p) or how much maximum risk he wants to take in his investments, σ_p.
- If he chooses an expected return, then the investment advisor can tell him how much risk he needs to take.
- If he chooses a level of risk, then the investment advisor can tell him how much returns he can expect.

通 とくき とくきとう

Risk free asset in the Markowitz solution: Capital Allocation

Susan Thomas The Markowitz framework

通 とく ヨ とく ヨ とう

Capital allocation between risky and risk-free

- We earlier considered any two assets A and B.
 Suppose A is the risk-free asset, and B is the risky asset.
- $E(r_p) = wr_f + (1 w)E(r_B)$ This is a linear combination of expected returns as usual.

•
$$(\sigma_{\rho}^2) = w^2 \sigma_{r_f}^2 + (1 - w)^2 \sigma_B^2 + 2w(1 - w) cov_{r_f,B}$$

- We know that $\sigma_{r_f} = 0$
- We also know that $cov_{r_f,B} = 0$
- Then,

$$(\sigma_{\rho}^2) = (1 - w)^2 \sigma_B^2$$

Or, $\sigma_{\rho} = (1 - w) \sigma_B$

(雪) (ヨ) (ヨ)

- Remarkable result: A portfolio of the risk-free and one risky asset has an $E(r_p) \sigma_p$ graph which is linear in both $E(r_p)$ and σ .
- This means that as you increase w, σ_p decreases linearly.
- For example, at w = 1, $\sigma_p = 0$
- At w = 0, σ_p is the maximum.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ …

- The capital allocation problem of choosing between the risky and the riskless asset is a linear problem: The higher the investment in the risky portfolio, both return and risk are linearly higher.
- The level of return desired implies the investment in risky vs. riskless asset.

< 回 > < 回 > < 回 > -

Risk-free asset in the Markowitz optimisation

- In the $E(r_p) \sigma_p$ graph, the risk–free asset (r_f) becomes a point on the y-axis, since $\sigma = 0$.
- By including the *r_f* asset, we get portfolios that have variance lower than that of the MVP.

・ 同 ト ・ ヨ ト ・ ヨ ト

The frontier with the risk-free asset

Susan Thomas The Markowitz framework

ヘロト 人間 とくほとくほとう

- The outcome of including the risk–free rate into the Markowitz framework is that the efficient set is now the linear combination of r_f and the tangent efficient portfolio.
- This is what we had seen in our analysis of portfolios containing one risky and the risk-free asset.
 What is different is that now we know what the "optimal risky portfolio" is.
- The combination of the risk-free and the "efficient portfolio" leads to the **one-fund theorem**:

There exists a single portfolio, F, of risky assets such that **any** efficient portfolio can be constructed as a linear combination of the portfolio and the risk–free asset.

< 回 > < 回 > < 回 > -

- Given that the optimal efficient portfolio *p*, the tangent line from *r_f* to *r_p* is called the "capital allocation line" since it solves the capital allocation problem.
- If the one–fund theorem is true, then all economic agents will buy only *F* in different proportions.
- The capital allocation line then becomes the efficient portfolio frontier.

・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・

- The capital allocation line is a mathematical statement about the rise in expected return that must reward a rise in the risk (σ) of a portfolio.
- It states by how much the expected return of a portfolio k increases with an increase in the related σ:

$$E(r_k) = r_f + \frac{E(r_p) - r_f}{\sigma_p} \sigma_k$$

The slope of this line is called the "price of risk".

(雪) (目) (日)

Simulation of the optimisation problem including the risk-free asset

Susan Thomas The Markowitz framework

通 とく ヨ とく ヨ とう

э

Problem: What happens to the E(r)- σ graph for our portfolio optimisation of six stocks, when we include a 0.12% weekly risk-free rate of return?

伺き くほき くほう

Example: Mean-variance of weekly returns

> colMeans(r)								
RIL I	nfosys	TataChem	n TELCO	TISCO) TTE	EA GI	rasim	rf
0.3139	0.1570	0.4076	0.2979	0.443	31 0.12	230 0	.3205 0.	.1200
> print(cor(r), digits=3)								
	RIL	Infosys 1	ataChem	TELCO	TISCO	TTEA	Grasim	rf
RIL	29.08	11.01	9.2	12.85	15.93	11.27	8.13	0
Infosys	11.01	61.23	10.1	4.06	8.72	7.48	7.60	0
TataChem	9.19	10.11	33.9	15.75	14.51	13.75	12.25	0
TELCO	12.85	4.06	15.7	38.17	20.16	16.60	7.64	0
TISCO	15.93	8.72	14.5	20.16	32.94	13.95	11.79	0
TTEA	11.27	7.48	13.8	16.60	13.95	29.64	8.02	0
Grasim	8.13	7.60	12.2	7.64	11.79	8.02	34.17	0
rf	0.00	0.00	0.0	0.00	0.00	0.00	0.00	0

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Example: E(r)- σ graph, N=20 portfolios

Susan Thomas The Markowitz framework

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Example: $E(r)-\sigma$ graph, N=3000 portfolios

Susan Thomas The Markowitz framework

・ 同 ト ・ ヨ ト ・ ヨ ト

With and without the risk-free rate

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Harry Markowitz and the Implementation Problem

Susan Thomas The Markowitz framework

< 回 > < 回 > < 回 > -

Operationalising the Markowitz solution

- Operationalising Harry's solution is simple as long as you have:
 - The correct values of $E(\vec{r}_a)$.
 - 2 The correct estimate of $\vec{\Sigma}$.
- This requires the investor to input
 - an $(N \times 1)$ vector of E(r) and
 - **2** an $(N \times N) \Sigma$ matrix of variances and covariances with N(N + 1)/2 upique values
 - N(N+1)/2 unique values.

・ 同 ト ・ ヨ ト ・ ヨ ト

Operationalising the Markowitz solution

- This is difficult for an investor.
- The investor might be able to give a desired *E*(*r*) for the portfolio.
 They may even be able to identify *E*(*r*) for pairs of assets.
- However, *E*(*r*) have to be consistent for different stocks. Example, it is unlikely that cement will do better than IT. Or that IT will do better than pharmaceuticals **and** pharmaceuticals will do better than cement! Most investors would not be able to ensure consistency.
- It is extremely difficult for investors to guess σ.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Operationalising the Markowitz framework

- Model estimates required for both E(r) and Σ .
- Empirical tests have shown estimates of historical performance yields inoptimal portfolio weights.
- Better alternatives come from asset pricing theory or using time series econometrics for better forecasting.
- Additional issue: the problem of dimensionality.
 As *N* tends to a large number, the difficulty of estimating the Σ increases asymmetrically.
 For every new asset that is included, there are *N* + 1 new numbers to be estimated

・ 同 ト ・ ヨ ト ・ ヨ ト …

Operationalising Markowitz: the time series approach

- Use time series forecasting for volatility of returns.
- Returns are modelled as:

$$E(r_i) = f(r_{it}, r_{it-1}, \dots, r_{i0})$$

$$\sigma_i^2 = g(r_{it}, r_{it-1}, \dots, r_{i0})$$

$$\sigma_{i,j} = h(r_{it}, r_{it-1}, \dots, r_{i0}; r_{jt}, r_{jt-1}, \dots, r_{j0})$$

- This approach is not very helpful in obtaining better forecasts of *E*(*r_i*) of asset, *i*.
 But it *does* improve the estimates of *σ_i*.
- For example, GARCH or EGARCH models perform better in risk-return delivered over the investment period.
- These are even more important for forecasting *covariances*.

・ 同 ト ・ ヨ ト ・ ヨ ト

• One attempt is the Black–Litterman (1992) approach:

- Initialise with a combination of αr_f , $(1 \alpha)r_m$. This gives us a set of weights on the risky assets.
- Customers are presented with these weights. They get the choice of changing weights on which they have an opinion.
- Other than this, we use asset pricing theory.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

- For a portfolio of risky assets, what is E(*r*_p)?
- How ought we to measure risk of these assets?
- What ought to be the relationship between risk and E(r)?
- Difficult questions: no clear answers from theory. Best known attempt: Capital Asset Pricing Model (CAPM), William Sharpe