Risky asset valuation and the efficient market hypothesis

Susan Thomas IGIDR, Bombay

May 13, 2011

Susan Thomas Risky asset valuation and the efficient market hypothesis

・ 同 ト ・ ヨ ト ・ ヨ ト

Pricing risky assets

Susan Thomas Risky asset valuation and the efficient market hypothesis

э

÷.

Principle of asset pricing: Net Present Value

- Every asset is a set of cashflow, maturity (*C_i*, *T_i*) pairs. There can be fixed/variable cashflows at fixed/variable times. (Eg. Bonds, options; insurance, equity.)
- Price of the asset is the price of all expected cashflows *E*(*C*), at dates *T*.
- What is a cashflow *E*(*C*) at *T* worth today?

$$\mathrm{NPV} = \frac{E(C)}{(1+r)^T}$$

Compound interest version:

$$NPV = e^{-sT}E(C)$$

where we use $s = \log(1 + r)$ and *r* is the discount rate.

- Valuation is all about getting the correct E(C), T, and r.
- The work we did to understand risk with Markowitz optimisation and CAPM comes in handy here to define *r* for any asset with risk.

Recap: Value of a security with risky cashflows

- A security produces cashflows $E(C_t)$ from t = 1 till ∞ .
- The security is worth P:

$$P = \sum_{t=1}^{N} \frac{E(C_t)}{(1+r_f + \Delta)^t}$$

- Operationalising this requires:
 - **1** The distribution of all $E(C_t)$ in the future
 - 2 The risk premium, Δ , for the discount rate

Which is hard!

・ 同 ト ・ ヨ ト ・ ヨ ト

Implementation of NPV, risky bond

- Let's assume that estimates of $E(C_i)$ are available.
- If (say) there is a risky bond with "N" cashflows, and we use risk neutrality, price P is:

$$\mathbf{P} = \sum_{t=1}^{N} \frac{E(C_t)}{(1+r_f)^t}$$

where r_f is the risk free rate of return.

1

If we know the credit premium △ for the risk of cashflows,
 P becomes:

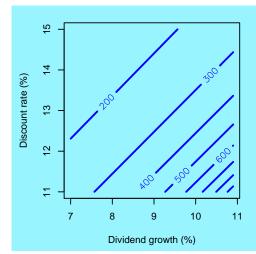
$$P = \sum_{t=1}^{N} \frac{E(C_t)}{(1+r_f + \Delta)^t}$$

Implementation of NPV, equity

- Equity is harder than bonds in that future cashflows are even more uncertain. Equity promises a fraction of the profits of the company at some undefined future time, called "dividends".
- The hard part is making estimates of *E*(*d_t*) at future dates.
 Once we estimate of *d_t*, the pricing technology is the same.
- NPV the future values of E(d_t),

$$P = \sum_{t=1}^{N} \frac{E(d_t)}{(1+r_f)^t} \text{ under risk-neutrality}$$
(1)
$$P = \sum_{t=1}^{N} \frac{E(d_t)}{(1+\Delta)^t}$$
(2)

Note: Finance theory focuses on modelling △.
 Security analysis focuses on models to forecast E(d_t). This focuses on one security at a time – relatively little theory goes there.


Why price are hard to estimate, and volatile

- The NPV of the firm's share depends supremely on your views about
 - future dividend growth, and
 - 2 the required risk premium.
- Slight changes to these views generate large changes in the price!

・ 同 ト ・ ヨ ト ・ ヨ ト

Sensitivity of stock prices: an example

Starting from $d_0 = 10$:

A huge range of stock prices associated with small changes in your view about future dividend growth and/or the risk and t

Susan Thomas

Risky asset valuation and the efficient market hypothesis

Summary

- In a risk neutral world, future E(C) are discounted at r_f .
- However, in a risk-averse context, we need to incorporate a risk premium for risky cashflows Δ.
- Asset pricing theory is about looking at an asset and saying what the △ should be for the risk characteristics of the firm.
- Even if Δ were known, valuation is hard!!
- It requires forecasting expected cashflows at future dates.
- Particularly for equity: NPV is very very sensitive to slight changes in either growth of dividends or risk premium.
- Every day, as views on these two numbers change, stock prices fluctuate.

ヘロト ヘワト ヘビト ヘビト

Traditional accounting methods

- For equity holders, the cashflows that are relevant are the free cashflow available to equity.
- These have been proxied by (a) the dividends paid out and (b) income net of the cashflows to debt holders, net of repayments, including new debt issued etc.
- These led to traditional approaches such as the **free cashflow** and the **dividend discount** models.
- Such models assume there is:
 - Consensus on the future free cashflows to equity, D_i.
 - Consensus on the discount rate, r_i.
 - Equity is infinitely lived.
- Established markets have financial analysts that forecast future cashflows from the balance sheets/P&Ls of companies.

ヘロト 人間 ト ヘヨト ヘヨト

The best economist would face a huge struggle to get a fix on *P* in any precise sense.

The revolutionary idea of finance

"Speculative trading by atomic traders on organised financial markets does a pretty good job of getting the correct P".

Markets as a valuation methodology

Susan Thomas Risky asset valuation and the efficient market hypothesis

・ 「 「 ・ ・ 「 ・ ・ 「 ・ ・ 」

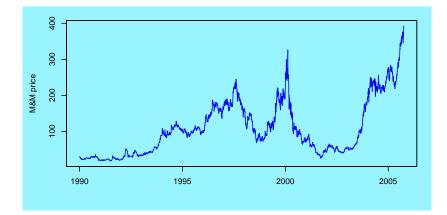
3

Markets: The wisdom of crowds

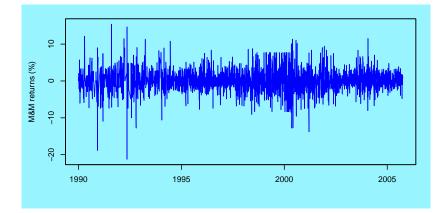
- There are millions of speculators on the market.
- If a security is "too cheap", speculators buy.
- If a security is "too costly", speculators sell.
- No one speculator has market power.
 Each speculator is well incentivised: he makes huge profits if he's right, and huge losses if he's wrong.
- The equilibrium price works out to be remarkably smart.
 "Market efficiency": The proposition that the price discovered by a speculative market does a pretty good job of embedding forecasts of future *d_t* and a sensible risk premium Δ.
- We shift gears from modelling equity prices, and try the understand the behaviour of prices from speculative markets.

(4回) (日) (日)

Understanding prices and returns

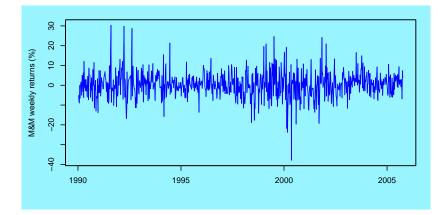

Susan Thomas Risky asset valuation and the efficient market hypothesis

프 🖌 🖌 프


- The market produces a time-series *P*₁, *P*₂, ...
- We like to focus on the percentage change in prices, the "returns".
- Prowess jargon: "Adjusted Closing Price" (ACP).

イロト イポト イヨト イヨト

Example: Mahindra & Mahindra


Susan Thomas Risky asset valuation and the efficient market hypothesis

Susan Thomas Risky asset valuation and the efficient market hypothesis

ъ

- Daily returns is common
- Weekly returns is useful
- You can go intra-day! Returns over five-minute intervals is precious.

Susan Thomas Risky asset valuation and the efficient market hypothesis

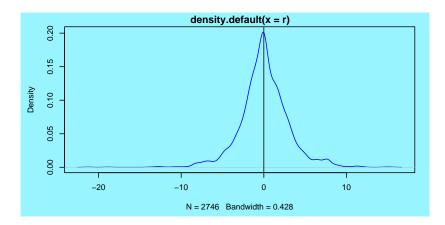
æ

ъ

Numerical example

```
> load("mnm.rda")
> tail(p)
2005-09-27 2005-09-28 2005-09-29 2005-09-30 200
364.95 371.10 371.85 377.50 389
> prices2returns(tail(p))
2005-09-28 2005-09-29 2005-09-30 2005-10-04
1.6711210 0.2018979 1.5080022 0.8442107
```

・ 同 ト ・ ヨ ト ・ ヨ ト …


э.

Summary statistics about returns

```
> load("mnm.rda")
> r <- prices2returns(p)</pre>
> summary(r)
    Index
                           r
Min. :1990-01-02
                     Min. :-21.25614
                     1st Qu.: -1.46368
1st Ou.:1995-02-08
Median :1998-09-06
                     Median : 0.00000
Mean :1998-07-13 Mean : 0.08008
3rd Ou.:2002-03-20
                     3rd Ou.: 1.64140
Max. :2005-10-04
                     Max. : 15.41507
> sd(r)
[1] 2.950983
```

▲ 문 ▶ ▲ 문 ▶ ...

æ

イロン イロン イヨン イヨン

æ

- In an efficient market, all speculators know the historical prices.
- Competition between them will eliminate opportunities for earning money "for free".
- This is like the zero-profit condition under perfect competition.
- In the limit, when millions of smart speculators are in play, returns should become non-forecastable (i.e. random).
- This is a testable statement.
- Simplest model: Returns are homoscedastic normal. But reality doesn't have to oblige.

イロト イポト イヨト イヨト

The random walk of speculative market prices

Susan Thomas Risky asset valuation and the efficient market hypothesis

▲ □ ▶ ▲ □ ▶ ▲

3

A model for speculative market prices

- We know that many rational speculators in a market ought to eliminate any arbitrage.
 Ie, similar assets will be similarly priced.
- Speculative markets ought to have prices with no forecastability – no predictable runs, no autocorrelations in returns.

 Samuelson 1965 was the first paper to put a model to prices in such a speculative market. The model: perfectly competitive markets with rational agents have prices which are a "random walk". This became the first widely accepted "quantitative model" for the DGP of speculative market prices.

(4回) (日) (日)

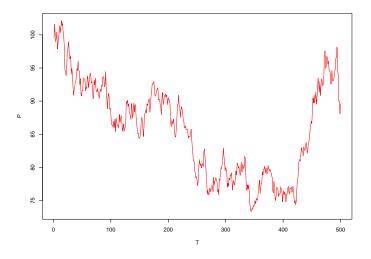
• If *x_t* is a random walk variable, then

$$\mathbf{x}_t = \mathbf{x}_{t-1} + \epsilon_t$$

where ϵ_t is iid.

Prices are log-normally distributed. Then, prices being a random walk means:

$$\log p_t = \log p_{t-1} + \epsilon_t$$

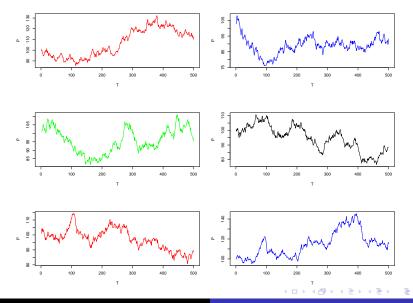

where ϵ_t is iid as $N(0, \sigma^2)$.

Example: plotting a simulated random walk

```
> P = 100 # In Rs.
> N = 500
> m = 0.01 # In percent
> sg = 1.2 # In percent
> plot(P*cumprod(1+(rnorm(N,m,sg)/100)),type="1",
> ylab="P",xlab="T",
> col="red")
```

(雪) (ヨ) (ヨ)

э.



Susan Thomas Risky asset valuation and the efficient market hypothesis

æ

æ

Simulations off the same DGP

Susan Thomas

Risky asset valuation and the efficient market hypothesis

Properties of a random walk

- The innovation at time *t* is ϵ_t .
- ϵ_t is **i.i.d.** drawn from $N(0, \sigma^2)$.
- All innovations to the DGP are permanent.

$$\log P_{t+1} = \log P_t + \epsilon_t$$

And,
$$\log P_{t+1} = \log P_{t-k} + \sum_{i=0}^k \epsilon_{t-i}$$

The best estimate of the forecasted price P_{t+1} is P_t.
 This is true for forecasts at all horizons, h, in the future. Ie,

$$E(P_{t+h})=P_t$$

These are also properties of a time series with a unit root.

伺き くほき くほう

A random walk is non-forecastable

•
$$P_{t+1} = P_t + \epsilon_{t+1}$$

- Forecastability is focussed on any new information/pattern, ϵ_{t+1} over P_t . This is a problem because:
 - ϵ_{t+1} tends to be a small change over P_t .
 - 2 ϵ_{t+1} is a random number.
- The focus of speculators tend to be on picking patterns in the data, either in the short run or the long run.
 Most appear to forget that random draws from a normal distribution have some **non-zero** probability of (a) runs and (b) temporal serial correlation.

・ 回 ト ・ ヨ ト ・ ヨ ト

Random walk prices, white noise returns

If prices follow a random walk, then

 $\log p_{t+1} = \log p_t + \epsilon_{t+1}$

where ϵ_{t+1} is iid as $N(0, \sigma^2)$.

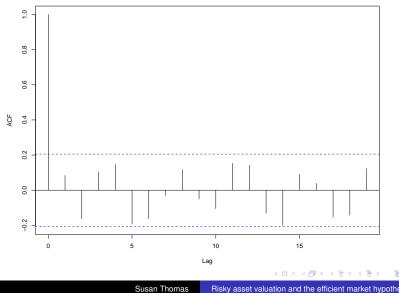
Quantitatively, this implies that

•
$$E(r_t) = E(\epsilon_t) = E(\epsilon) = 0$$

E(r_tr_t)² = σ_ε²
 This should hold irrespective of what point *t* in the time series is observed.

• $E(r_{t+1}r_t) = 0$; there is no autocorrelation in the series. This should hold for autocorrelations at **all** lags. Eg., $E(r_{t+k}r_t) = 0, \forall k$

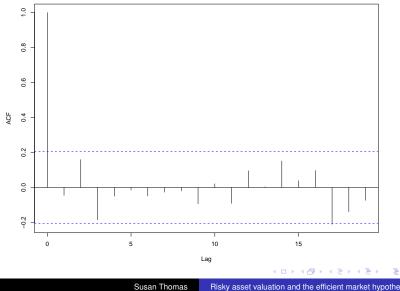
・ロット (雪) () () () ()


Autocorrelations in white noise series

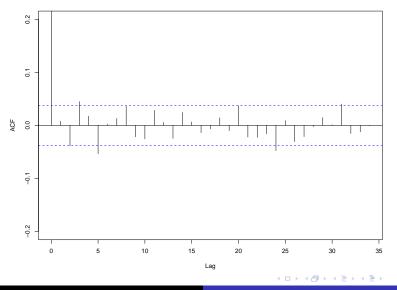
- > library(tseries)
- > load("6_5.rda")
- >
- > acf(r[1000:1090])

ъ

Example: Nifty, 90 days 1


Series r[500:590]

Risky asset valuation and the efficient market hypothesis


Example: Nifty, 90 days 2

Series r[1000:1090]

Risky asset valuation and the efficient market hypothesis

Example: Nifty, 2000 days

Series r

Susan Thomas Risky asset valuation and the efficient market hypothesis

Efficient Market Hypothesis (EMH)

Susan Thomas Risky asset valuation and the efficient market hypothesis

ъ

The grand market efficiency debate

- A strong market efficiency position is: There is zero forecastability of returns.
- Some people get excited when a *t* stat of 2.5 turns up, they have "rejected the H₀ of market efficiency".
- There is a lot of talk about "inefficient markets" based on such rejections.
- But no forecasting equations have substantial power.
- *H*₀ can be rejected, but with a tiny *R*², the process is mostly white noise! What is remarkable is not that there are small chinks: what is remarkable is how the broad idea works rather well.
- The socialist view is: Speculators are evil, the speculative process is gambling. Modern finance knows better.

・ロト ・ 同ト ・ ヨト ・ ヨト

EMH claims that investment in an asset priced in a speculative market is done at the "fair value" of the asset.

- "Asset prices fully and instantaneously rationally reflect all available relevant information." (Fama 1969,1971)
- "Asset prices reflect information to the point where the marginal benefits of acting on information (the profits to be made) do not exceed the marginal costs."

Good textbook reference: John Y Campbell, Andrew W. Lo, Craig A. MacKinlay, 1995, "The econometrics of financial markets", published by Princeton University Press.

ヘロト 人間 ト ヘヨト ヘヨト

EMH: Implications

- If the price is the correct discounted value of future cashflows, there are two sets of implications:
 - There are no arbitrage opportunities: you only get returns if you take risk.
 - There are implications on *E*(*r*) of any asset: this ought to be a function only of the risk premium on equity. This means *E*(excess returns) across any pair of assets ought not to differ persistently.

These ought to be true given a fixed information set.

- Research goal: Do these statements about no-arbitrage actually hold in a market?
- We need to test EMH for a given market.

ヘロト ヘワト ヘビト ヘビト

- Tests of EMH are categorised depending upon the information captured by market prices.
- The test categories are:
 - Weak form: tests based on publicly observed information.
 - Semi-strong form: based on information that is originally observed by a few, and then becomes publicly disclosed.
 - Strong form: based on information that only a small set of investors could be privy to.
- For example, testing for autocorrelation in a price series is a **weak form** test of EMH.

The tests are based on prices, which are publicly observed.

ヘロト ヘ戸ト ヘヨト ヘヨト

 ANDREW LO, (editor) Market Efficiency: Stock Market Behaviour in Theory and Practice (International Library of Critical Writings in Economics). Edward Elgar Publishing, 1997

▲ @ ▶ ▲ 三 ▶ ▲

- ⊒ →