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@ Multiple measures of “risk” (volatility) of asset/portfolio
returns: o, range-based, systematic risk, etc.

@ How do we choose the “best” from the viewpoint of a
volatility forecast?

@ Step 1: Select a financial context — VaR/Optimal Portfolio.

@ Step 2: Apply the different candidates to the selected
context.

@ Step 3: Measure the actual VaR/Sharpe’s Ratio of the
portfolio observed forward in time.

@ Step 4: Use a statistical test to answer the question: How
do our different candidates behave relative to the
observed?

@ Step 5: Select a candidate based on the test.
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Testing the performance of VaR forecasts
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Defining the variable of focus

@ Define VaR at p level of confidence and t interval: v;

/ " h(rdr=p

o0

@ Define “failure” of the model as r; < v;.

@ Define a good model (ie, a forecast of risk), f(r) such that
Pl’(ft < Vt) ==
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Simplest statistical tests

@ A good statistical test is one which focusses on rt, v4 ; as
outcomes to be compared without any dependence on the
model that generated v4 ;.

o For example, 12, 5°r5, , as the estimate of o2 in a normal
distribution generating two possible values of VaR (V;, V,).

@ Compare ( V4, V) against actual return, r; .
o If Vy <r.qand Vo > r;,q, then Vy is better than Vs.

@ Statistical test: Repeat this many times, and see which of
Pr(Vq, Vo > ;1) is closer to p.
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Real world complications

@ Typically, both V4, V» show similar performance on the
Pr(Vi < riyq) wrt p.
Which do you choose?
@ The test itself does not recognise heteroskedasticity: ie, it
wants the unconditional probability of failure to match, p.
@ But what if:
@ Pr(Vy > ripq) =Pr(Va > 1) = p, but:
o Pr(Vi > rio|Vi > i) # 0, and
@ Pr(Vo > ro|Vo>ryq) =07
@ Solution: Christoffersen, 1998 and the test of interval
forecast evaulation.
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Christoffersen’s tests

@ Transform the data on r, v; into /i, where:
o I =1if vy > r, and
Q =0ifnot.
@ The forecasts are efficient if they show both correct
unconditional coverage and no independence.
Called “correct conditional coverage”.
@ Three steps to a definitive test of “coverage”:
@ Necessary: test of unconditional coverage —
Pr(vi > 1) = p.
@ Test of independence — test I; against an alternative of first
order markov process.
© Test of correct conditional coverage — Hj : independent
process with unconditional coverage of p. H; : first order
markov process with unconditional coverage different from
p.
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Limitations to Christoffersen

@ Problem #1 The alternative is limited — we only test for first
order markov process.
What if there is a higher order of dependence?

@ Solution Christoffersen and Diebold 2000, Clements and
Taylor 2000 do have a more general test.
This includes cyclical dependencies, as well as higher
order lags. But specific dependencies have to be tested for.

@ Problem #2 Too many forecast models are admitted in by
these tests as well.
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Lopez’s loss function approach

@ Critical observation: The indicator variable does not care
about the magnitude of the error.
In the real world we do.

@ Critical observation: Some users of volatility forecasts care
only about /oss (for example, regulators).
Others care about both (for example, business cares about
capital efficiency, rather than just a loss).
@ Lopez incorporates the user’s utility function into the
calculation of /; as follows:
e Example 1: Iy = (r — v;)? if vy > r;44; 0 if not.
e Example 2: Iy = (r — »)? if vy > rryq; —av; if not.
@ In the second example, the magnitude of the error is part
of the test. The larger the error, the greater the penalty to
the model.
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Lopez’ tests

@ Define z; = /1t — kb ;. This will have some distribution.
@ Definevy=1ifz>0; v, =01if z; < 0.
@ If z; isiid, then ) ; v is binomial(T,0.5).

Susan Thomas Comparing risk measures using VaR forecasts



SarmaShahThomas 2003

@ Competing forecasts of risk: Equally Weighted Moving
Average (EWMA) model, RiskMetrics (RM), GARCH(1,1),
Historical Simulation.

@ Variable: Daily Nifty, 1990 to 2000.
@ Results:

o At 95% daily VaR: Christoffersen does not reject
GARCH(1,1) and RM. ChristoffersenDiebold does not
reject GARCH(1,1).

o At 99% daily VaR: Christoffersen does not reject
GARCH(1,1) and RM. Lopez finds that the regulatory loss
function does not differentiate between RM and
GARCH(1,1).
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