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Recap

Multiple measures of “risk” (volatility) of asset/portfolio
returns: σ, range-based, systematic risk, etc.
How do we choose the “best” from the viewpoint of a
volatility forecast?
Step 1: Select a financial context – VaR/Optimal Portfolio.
Step 2: Apply the different candidates to the selected
context.
Step 3: Measure the actual VaR/Sharpe’s Ratio of the
portfolio observed forward in time.
Step 4: Use a statistical test to answer the question: How
do our different candidates behave relative to the
observed?
Step 5: Select a candidate based on the test.
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Testing the performance of VaR forecasts
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Defining the variable of focus

Define VaR at p level of confidence and t interval: vt∫ vt

−∞
ft(r)dr = p

Define “failure” of the model as rt < vt .
Define a good model (ie, a forecast of risk), f (r) such that
Pr(rt < vt) == p.
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Simplest statistical tests

A good statistical test is one which focusses on rt , v1,t as
outcomes to be compared without any dependence on the
model that generated v1,t .
For example, r2

t , β
2r2

m,t as the estimate of σ2 in a normal
distribution generating two possible values of VaR (V1,V2).
Compare (V1,V2) against actual return, rt+1.
If V1 < rt+1 and V2 > rt+1, then V1 is better than V2.
Statistical test: Repeat this many times, and see which of
Pr(V1,V2 > rt+1) is closer to p.
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Real world complications

Typically, both V1,V2 show similar performance on the
Pr(Vi < rt+1) wrt p.
Which do you choose?
The test itself does not recognise heteroskedasticity : ie, it
wants the unconditional probability of failure to match, p.
But what if:

Pr(V1 > rt+1) = Pr(V2 > rt+1) = p, but:
Pr(V1 > rt+2|V1 > rt+1) 6= 0, and
Pr(V2 > rt+2|V2 > rt+1) = 0?

Solution: Christoffersen, 1998 and the test of interval
forecast evaulation.
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Christoffersen’s tests

Transform the data on rt , vt into It , where:
1 It = 1 if vt > rt , and
2 It = 0 if not.

The forecasts are efficient if they show both correct
unconditional coverage and no independence.
Called “correct conditional coverage”.
Three steps to a definitive test of “coverage”:

1 Necessary: test of unconditional coverage –
Pr(vi > rt+1) = p.

2 Test of independence – test It against an alternative of first
order markov process.

3 Test of correct conditional coverage – H0 : independent
process with unconditional coverage of p. H1 : first order
markov process with unconditional coverage different from
p.
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Limitations to Christoffersen

Problem #1 The alternative is limited – we only test for first
order markov process.
What if there is a higher order of dependence?
Solution Christoffersen and Diebold 2000, Clements and
Taylor 2000 do have a more general test.
This includes cyclical dependencies, as well as higher
order lags. But specific dependencies have to be tested for.
Problem #2 Too many forecast models are admitted in by
these tests as well.
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Lopez’s loss function approach

Critical observation: The indicator variable does not care
about the magnitude of the error.
In the real world we do.
Critical observation: Some users of volatility forecasts care
only about loss (for example, regulators).
Others care about both (for example, business cares about
capital efficiency, rather than just a loss).
Lopez incorporates the user’s utility function into the
calculation of It as follows:

Example 1: lt = (rt − vt)
2 if vt > rt+1; 0 if not.

Example 2: lt = (rt − vt)
2 if vt > rt+1; −αvt if not.

In the second example, the magnitude of the error is part
of the test. The larger the error, the greater the penalty to
the model.
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Lopez’ tests

Define zt = l1,t − l2,t . This will have some distribution.
Define νt = 1 if zt ≥ 0; νt = 0 if zt < 0.
If zt is iid, then

∑
T νt is binomial(T ,0.5).

Susan Thomas Comparing risk measures using VaR forecasts



SarmaShahThomas 2003

Competing forecasts of risk: Equally Weighted Moving
Average (EWMA) model, RiskMetrics (RM), GARCH(1,1),
Historical Simulation.
Variable: Daily Nifty, 1990 to 2000.
Results:

At 95% daily VaR: Christoffersen does not reject
GARCH(1,1) and RM. ChristoffersenDiebold does not
reject GARCH(1,1).
At 99% daily VaR: Christoffersen does not reject
GARCH(1,1) and RM. Lopez finds that the regulatory loss
function does not differentiate between RM and
GARCH(1,1).
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