Evaluating risk measures using portfolio optimization

Renuka Sane

March 2011

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Overview

- Measures of correlations
- Testing Strategy: Uniform weights
- Testing Strategy: Portfolio optimization

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

The portfolio optimisation framework

- Given N stocks, how do we create an "efficient" portfolio?
- Markowitz approach:
 - Get the correct values of $E(\vec{r}_a)$, and
 - the correct estimate of Σ.
- Find w such that:

minimise
$$\frac{1}{2} \sum_{i,j=1}^{n} w_i w_j \sigma_{ij}$$

subject to $\sum_{i=1}^{n} w_i E(r_i) = E(r_p)$
 $\sum_{i=1}^{n} w_i = 1$

(日) (日) (日) (日) (日) (日) (日)

 Resultant portfolio should have the best portfolio performance in the investment period.

Using portfolio optimisation to pick the correct risk measure

- Risk comparison framework: Given risk candidates $\sigma_1, \sigma_2, \ldots, \sigma_n$ and a *T* sized data set of returns:
 - Select *K* days to estimate
 *ô*₁, *ô*₂,..., *ô*_n for the portfolio. This is the "in-sample" data.
 - Use these to calculate $\vec{w}_1, \vec{w}_2, \dots, \hat{\vec{w}}_n$.
 - ► For the next K + m days, observe $\hat{r}_1, \hat{\sigma}_1, \hat{r}_2, \hat{\sigma}_2, ..., \hat{r}_n, \hat{\sigma}_n$. Use this to calculate (say) SR₁, SR₂,..., SR_n. This is the "out of sample" data, and typically m = K.
 - Repeat this for the full sample *T*, moving the in-sample period up by *K* days.
- σ_i that generated w
 _i with the lowest value of
 ^ˆ_p or highest value of SR is the "best" measure of risk.

Example of operationalising the portfolio optimisation framework

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Candidates for covariance matrix estimation

- Historical covariance matrix (HC)
- Single index-market model (SIMM)
- Vasicek beta correction (VB) modification of SIMM

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Sample covariance matrix and SIMM

- Sample covariance: traditional method, estimation error-prone.
- SIMM: Assumes that returns of any asset Y_i are correlated with returns on the market index.
- Covariance matrix:

$$C=s_{00}^2bb'+D$$

- s²₀₀ = sample variance of market returns, b_i = slope estimate, D = diagonal matrix containing residual variance estimates d_{ii}
- Use package stockPortfolio

Vasicek beta

Adjusts past β's towards the average β by modifying each β using the sampling error around it

$$b'' = rac{rac{b'}{s_b'^2} + rac{b'}{s_b^2}}{rac{1}{s_b'^2} + rac{1}{s_b^2}}$$

$${s_b^{''2}} = rac{1}{rac{1}{s_b^{\prime 2}} + rac{1}{s_b^2}}$$

・ロト・日本・日本・日本・日本

- S²_b is the variance of beta; b' and S'_b are parameters from the prior distribution.
- Use the modified β to obtain the covariance matrix
- Use package stockPortfolio

Testing framework: Intuition

- Models must generate optimal portfolios
- One measure of optimal: Least variance
- Other measures: Tracking error, Sharpe Ratio

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Comparing alternative estimators #1

- Compare the portfolio variance predicted by the various covariance matrices to the actual out-of-sample portfolio variance
- The weights are generated from a uniform distribution
 - 1. Calculate the mean, median and standard-deviation of the difference

(日) (日) (日) (日) (日) (日) (日)

Rolling-window estimates of the same

Predetermined weights

623 days in-sample, from 24/08/07 to 09/03/10 100 days out-of-sample, from 10/03/10 to 30/07/10 10,000 replications, True SD - Predicted SD

		In-sample		Ou	it-of-sample	е
Covariance matrix	Mean	Median	SD	Mean	Median	S
HC	-9.23e-18	0.00	3.77e-16	-1.4640	-1.5130	0.07
SIMM	0.078	0.078	0.015	-1.386	-1.384	0.07
VB	0.0887	0.08797	0.017	-1.377	-1.376	0.06

Comparing alternative estimators for portfolio size 5

- Randomly choose a portfolio of 5 stocks
- Create 100 such portfolios
- Compare the three estimators for each portfolio

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Results: 5 stock portfolio for fixed N

623 days in-sample, from 24/08/07 to 09/03/10 100 days out-of-sample, from 10/03/10 to 30/07/10

	Mean of average difference	Mean of average SD
HC	-1.6127	0.5414
SIMM	-1.5773	0.5391
VB	-1.5717	0.5354

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Results: 5 stock portfolio for varying N

100 days out-of-sample, from 10/03/10 to 30/07/10 10,000 replications, True SD - Predicted SD

Days	HC	SIMM	VB
805	-1.4359	-1.3498	-1.3461
	-2.3212	-2.2404	-2.2590
	-1.1585	-1.1936	-1.1903
	-1.7095	-1.6032	-1.6074
1028	-1.9357	-1.8959	-1.8955
	-1.6973	-1.6630	-1.6472
	-0.6975	-0.6695	-0.6674
	-1.4616	-1.4640	-1.4496

Comparing alternative estimators #2

- Models forecasting performance compared using the variance of the optimized portfolio's returns.
- Carry out the portfolio optimization

 $minw'\Sigma w$

$$w'r = E(r)$$

- Obtain the weights w
- Use the weights and the out of sample returns to compute the σ_p

(ロ) (同) (三) (三) (三) (○) (○)

- Compare the σ_p
- Use package portfolio.optim in tseries

Portfolio optimization

Portfolio variance using weights from the portfolio optimization exercise.

623 days in-sample, from 24/08/07 to 09/03/10

100 days out-of-sample, from 10/03/10 to 30/07/10

	Out-of-sample SD
HC	0.707
SIMM	0.682
VB	0.683

(日) (日) (日) (日) (日) (日) (日)

Thank you.